Aperçu des sections

  • Home Page

    Abd Alhafid Boussouf Boussouf Mila University Center
    Institute of Mathematics and Computer Science
    Date: January 31, 2025

    Semester: 2

    General Course Information

    ·         Teaching Unit: Fundamental

    ·         Course Title: Algebra 2

    ·         Field/Program/Specialization: Computer Science

    ·         Academic Year: 2024/2025

    ·         Credits: 4

    ·         Coefficient: 2

    ·         Name: Mohamed Kecies

    ·         Email: m.kecies@centre-univ-mila.dz

    Learning Objectives: Establish foundational principles of vector spaces.

    Recommended Prerequisite Knowledge:  Basic notions of algebra.

    Chapter 1: Vector Spaces

    • Definition of a vector space.
    • Subspaces and examples.
    • Linearly Independent and Dependent Families, and Spanning Families,
    • Properties of finite-dimensional vector spaces.
    • Complementary subspaces.

    Chapter 2: Linear Mappings

    • Definition of a linear mapping.
    • Image and kernel of a linear mapping.
    • Rank of a linear mapping and the rank theorem.
    • Composition of linear mappings.
    • Inverse of a bijective linear mapping and the notion of automorphism.

    Chapter 3: Matrices

    • Matrix associated with a linear mapping.
    • Operations on matrices: sum, product, transposition.
    • Vector space of matrices with m rows and n columns.
    • Ring of square matrices.
    • Determinant of a square matrix and its properties.
    • Invertible matrices.
    • Rank of a matrix and associated mapping.
    • Rank invariance under transposition.

    Chapter 4: Solving Systems of Linear Equations

    • Systems of linear equations and their matrix representation.
    • Rank of a system of equations.
    • Cramer's method.

    Assessment Method:
    Weighting of Continuous Assessment and Final Exam :

     

    Pondération

    Final Exam

    60%

    Continuous Assessment

    40%

    Attendance and participation

    8=3+3+2

    Quizzes (number):

    12 (1)

    Practical Work (number):

    /

    Presentations:

    /

    Reports:

    /

    Internship reports:

    /

    Field trip reports:

    /

    Other 1/ ……………………………………………….

    /

    Other 2: ……………………………………………….

    /

    Other 3 : ……………………………………………….

    /

    Total

    20

    Total

    1  (100%

    Bibliographic References:

    Books, Course Notes, Online Resources :

    1. Algèbre linéaire et bilinéaire, cours et exercices corrigés   510-516
    2. Introduction a l'algèbre linéaire 510-552
    3. Toute l’algèbre de la licence, cours et exercices corrigés   510-332
    4. Algèbre exercices et problèmes  510-420
    5. Algèbre linéaire, cours et exercices corrigés, mathématiques à l’université  510-24
    6. Algèbre linéaire -cours et exercices corrigés- 510-1065