Abdelhafid Boussouf University Center, Mila
Institute of Mathematics and Computer Sciences
First year of Computer Science License 2024/2025

Algebra II, Worksheet 3 answers

Exercise No. 1:
Solution :
1. Suppose that the mappings f and g are linear. Then, the composition

is defined, and thus
gof:E — G

We know that
g o f is linear (or a vector space morphism)

=,{ (@)Vx,y €E:(go f)(x+y) = (g0 f)()+(g° f)(v)
(@m)VAeK:Vx€eE:(gof)(A-x)=A-(g0 f)(x)

=S Va,peK:VryeE:(gof)(a-x+p-y)=a-(gof)()+p-(g°f) ).
Leta,p € Kand x,y € E .Then

(gof)la-x+B-y)=g(f(a-x+B-y)=g(a-f(x) +B-f(y) (since f is linear)

=a-g(f(x)+pB-9(f(y)) (since g is linear)
=a-(gof)x)+p-(9°f) ().
Therefore, g o f is linear, and hence g o f € Lx(E, G), where Lx(E, G) denotes the set of all linear
mappings from E to G over the field K.

2. (a) Since f is defined from R? to R, it suffices to determine f(x) for any x € R?. Let x € R?,
since B is a basis of IR?, there exist unique scalars A1, A5, A3 € R such that

x = Ae1 + Ares + Azes .
Thus, we have

f(X) = f (/\161 + Arer + /\383) = Alf(el) + Azf(EQ) + /\3f(€3) (since f is linear)
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Thus, the linear mapping f can be expressed as

f . RS — IR3
x= (A, A0 A8) = f@) = (=M1 + 240 +243), 1 241 = Mg +2A5), 1 (241 + 24, = Ay)).
(j)We have
f(vl) = f(el —e) = f(€1) - f(ez) =e,—e =—(eg —e) = -1y,

so v; € F;. The same method applies to v; and vs.



(k) Recall that the family B’ forms a basis of R?® if and only if it is linearly independent and
spans IR? (span(B’) = IR?). Since the dimension of R® is equal to the cardinality of B/, it suffices to
show that B’ is linearly independent.

Let A4, A, A3 € R such that

A1 + A00 + A3 = O]R3.

This leads to A1 = A, = A3 = 0, hence B’ is linearly independent and therefore B’ forms a new basis
for R3.
(1) To determine the mapping f* = f o f, it suffices to compute f*(x) for all x € R?, since f? is

defined from R to IR>.
Let x € R®. Since B’ is a basis of R®, we can express x in the form

X = Aoy + Aoy + A303, A1, Ay, Az € R,
then we have (Applying f twice, we obtain)

) = (f o f) (0) = f(f(A101 + Agva + A303)) = f(ALf(v1) + Aof (02) + Asf(03))
= f(=Av1 — A0y + A303) = —Ay f(01) — Apf(02) + A3 f(03)

= Mo + Ao, + /\37]3 = X.

Thus, we conclude that
f=fof=ly,
is the identity mapping on IR>.
We know that the mapping f is bijective if and only if there exists a mapping g : R> — R®
such that
go f=Idgs et fog=Idgs
with f~! = g. Since
f*=fof=Idg
it follows that f is bijective, and the inverse of f is f itself (i.e., f~! = f).
Exercise No. 2 :
Solution :
1. (i) We know that f is an endomorphism of the vector space R,[X] if and only if :
(a) f is a morphism of the vector space R;[X] (i.e., a linear mapping).
(b) f is defined from R,[X] to Ry[X], thatis f : Ry[X] — Ry[X].
(a) Lett A1, A, € R and Py, P, € Ry[X]. Then,

(X +1)?
2

F(ALPy + AyP5) = — (A1Py + A,P5)@ + (X + 1) (A1 Py + AaPo)® = Ay £(P1) + Ao f(Py).

This shows that f is linear.
(b) On the other hand, let P = ag + a; X + a,X? € R,[X]. Then,

P = a + 2512X,P” =2a,
We obtain
f(P) =a—ar, +m X+ ﬂng.

Since a, € R, it follows that deg(f(p)) < 2. Therefore, f(P) € R;[X], which shows that f is an
endomorphism of Ry[X].
(j) We have

fof=fe VP eR[X]:(fof)(P)=f(P)
since f o f : Ry[X] — Ry[X] and f : Ry[X] — Ry[X]



LetP=ay+a X+ leXz S ]Rz[X] Then,
fP)=a;—ay + ;X +a,X> = cp + 1 X + . X°

where
Co=4dy —4dy,C1 =ay1,C = .

Thus, we obtain
(f o f) (P) = f(f(p)) = f(CO +c0 X+ C2X2) =0 —C+cX+ C2X2 =a—dm+m X+ llzXz = f(P)

This proves that f o f = f.
2. (i) We know that the kernel of f, denoted ker(f), is defined by

ker(f) = {P =dg+ alX + ﬂzXz S ]RQ[X] : f(P) = O]RZ[X]}

:{P:a0+a1X+a2X2€1R2[X]:al—a2+a1X+a2X2:0+OX+OX2}

= {P :a0+a1X+a2X2 S le[X] a1 =4ap; = 0}
={P=ayp=ap-1:ay € R} (the kernel consists of constant polynomials)
= span(L; = {R; = 1})

is the vector subspace of R;[X] spanned by the family L. Since, R; = 1 # O,[xj, so L; is linearly
independent, and thus L, forms a basis of ker(f).
(ii) The image of f, denoted by Im(f) or f(IR;[X]), is the subset defined as

Im(f) = f(E) = {f(P) : P = ag + ;X + 1, X* € Ry[X]]

= {111 - +m X+ a2X2 ‘a1, 0 € ]R2[X]}
= {m(X +1) +ax(X* = 1) : 41,1 € Ry[X]}
= {mQ1 + 1,0, : a1,a; € Ry[X]}

= span(L, = {Q1, Q2})

is the vector subspace of R;[X] spanned by the family L,.
Moreover, it is easy to verify that the family L, is linearly independent. Hence, L, is a basis for
Im(f). We then obtain that the rank of f is:

rank(f) = dim2061(Im(f)) = 2.
Other method : By the Rank Theorem, we have
dim R,[X] = dim(ker(f)) + dim(Im(f)) = dim(ker(f)) + rank(f).

which implies
rank(f) = dim Ry[X] — dim(ker(f)) =3-1=2

Exercise No. 3 :
Solution
1. Suppose f(L) is linearly independent in F. Consider scalars A4, A, ..., A, € K such that

)\1x1 + /\23(?2 + ...+ Anxn = OE.
Applying f and using its linearity, we obtain

f()\lxl + Asz + ...+ /\nxn) = Alf(xl) + AQf(.XZ) + ...+ /\nf(xn) = f(OE) = Of.
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Since f(L) is linearly independent, it follows that all the scalars A4, A, ..., A, are zero. Thus, L is
also linearly independent in E.

2. Suppose L is linearly independent in E and f is injective. Consider scalars A4, A5, ..., A, € Ksuch
that

Alf(xl) + Azf(Xz) + ...+ /\nf(xn) = 0,

then, by linearity of f,
f(/\lxl + Aoy + ...+ /\nxn) = f(OE)

Since f is injective,
Axy + Axp + .o+ Ay, = Of.

As L is linearly independent, all A4, A5, ..., A, must be zero. Thus, f(L) is linearly independent in F.

3. If L is linearly dependent in E, there exist scalars A4, A5, ..., A, not all zero, such that
Axy + Ao + .o+ Aux, = Og.
Applying to both sides and using linearity, we obtain
fAixs + Aoxo + oo+ Apxy) = A f(x1) + A f(x2) + ... + A f(x,) = f(O) = Op

Since at least one A; is nonzero, this implies that f(L) is linearly dependent in F.



