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Algebra II, Worksheet 3 answers

Exercise No. 1 :
Solution :
1. Suppose that the mappings f and 1 are linear. Then, the composition

E
f
−→ F

1
−→ G

is defined, and thus
1 ◦ f : E −→ G

We know that
1 ◦ f is linear (or a vector space morphism)⇐⇒

⇐⇒

{
(a1)∀x, y ∈ E :

(
1 ◦ f

) (
x + y

)
=

(
1 ◦ f

)
(x) +

(
1 ◦ f

) (
y
)

(a2)∀λ ∈ K : ∀x ∈ E :
(
1 ◦ f

)
(λ · x) = λ ·

(
1 ◦ f

)
(x)

⇐⇒ ∀α, β ∈ K : ∀x, y ∈ E :
(
1 ◦ f

) (
α · x + β · y

)
= α ·

(
1 ◦ f

)
(x) + β ·

(
1 ◦ f

) (
y
)
.

Let α, β ∈ K and x, y ∈ E .Then(
1 ◦ f

) (
α · x + β · y

)
= 1

(
f
(
α · x + β · y

))
= 1

(
α · f (x) + β · f

(
y
))

(since f is linear)

= α · 1
(

f (x)
)

+ β · 1
(

f
(
y
))

(since 1 is linear)

= α ·
(
1 ◦ f

)
(x) + β ·

(
1 ◦ f

) (
y
)
.

Therefore, 1 ◦ f is linear, and hence 1 ◦ f ∈ LK(E,G), where LK(E,G) denotes the set of all linear
mappings from E to G over the field K.

2. (a) Since f is defined from R3 to R3, it suffices to determine f (x) for any x ∈ R3. Let x ∈ R3,
since B is a basis of R3, there exist unique scalars λ1, λ2, λ3 ∈ R such that

x = λ1e1 + λ2e2 + λ3e3 .

Thus, we have

f (x) = f (λ1e1 + λ2e2 + λ3e3) = λ1 f (e1) + λ2 f (e2) + λ3 f (e3) (since f is linear)

=
λ1

3
(−e1 + 2e2 + 2e3) +

λ2

3
(2e1 − e2 + 2e3) +

λ3

3
(2e1 + 2e2 − e3)

=
(
−λ1

3
+

2λ2

3
+

2λ3

3

)
e1 +

(2λ1

3
−
λ2

3
+

2λ3

3

)
e2 +

(2λ1

3
+

2λ2

3
−
λ3

3

)
e3

=
1
3

(−λ1 + 2λ2 + 2λ3) e1 +
1
3

(2λ1 − λ2 + 2λ3) e2 +
1
3

(2λ1 + 2λ2 − λ3) e3

Thus, the linear mapping f can be expressed as

f : R3
−→ R3

x = (λ1, λ2, λ3) 7−→ f (x) =
(

1
3 (−λ1 + 2λ2 + 2λ3) , 1

3 (2λ1 − λ2 + 2λ3) , 1
3 (2λ1 + 2λ2 − λ3)

)
.

(j)We have
f (v1) = f (e1 − e2) = f (e1) − f (e2) = e2 − e1 = −(e1 − e2) = −v1,

so v1 ∈ F1. The same method applies to v2 and v3.
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(k) Recall that the family B′ forms a basis of R3 if and only if it is linearly independent and
spans R3 (span(B′) = R3). Since the dimension of R3 is equal to the cardinality of B′, it suffices to
show that B′ is linearly independent.

Let λ1, λ2, λ3 ∈ R such that
λ1v1 + λ2v2 + λ3v3 = 0R3 .

This leads to λ1 = λ2 = λ3 = 0, hence B′ is linearly independent and therefore B′ forms a new basis
for R3.

(l) To determine the mapping f 2 = f ◦ f , it suffices to compute f 2(x) for all x ∈ R3, since f 2 is
defined from R3 to R3.

Let x ∈ R3. Since B′ is a basis of R3, we can express x in the form

x = λ1v1 + λ2v2 + λ3v3, λ1, λ2, λ3 ∈ R,

then we have (Applying f twice, we obtain)

f 2(x) =
(

f ◦ f
)

(x) = f ( f (λ1v1 + λ2v2 + λ3v3)) = f (λ1 f (v1) + λ2 f (v2) + λ3 f (v3))

= f (−λ1v1 − λ2v2 + λ3v3) = −λ1 f (v1) − λ2 f (v2) + λ3 f (v3)

= λ1v1 + λ2v2 + λ3v3 = x.

Thus, we conclude that
f 2 = f ◦ f = IdR3 ,

is the identity mapping on R3.
We know that the mapping f is bijective if and only if there exists a mapping 1 : R3

−→ R3

such that
1 ◦ f = IdR3 et f ◦ 1 = IdR3

with f −1 = 1. Since
f 2 = f ◦ f = IdR3

it follows that f is bijective, and the inverse of f is f itself (i.e., f −1 = f ).
Exercise No. 2 :
Solution :
1. (i) We know that f is an endomorphism of the vector space R2[X] if and only if :

(a) f is a morphism of the vector space R2[X] (i.e., a linear mapping).
(b) f is defined from R2[X] to R2[X], that is f : R2[X] −→ R2[X].
(a) Let t λ1, λ2 ∈ R and P1,P2 ∈ R2[X]. Then,

f (λ1P1 + λ2P2) = −
(X + 1)2

2
(λ1P1 + λ2P2)(2) + (X + 1)(λ1P1 + λ2P2)(1) = λ1 f (P1) + λ2 f (P2).

This shows that f is linear.
(b) On the other hand, let P = a0 + a1X + a2X2

∈ R2[X]. Then,

P′ = a1 + 2a2X,P′′ = 2a2

We obtain
f (P) = a1 − a2 + a1X + a2X2.

Since a2 ∈ R, it follows that deg( f (p)) ≤ 2. Therefore, f (P) ∈ R2[X], which shows that f is an
endomorphism of R2[X].

(j) We have
f ◦ f = f ⇐⇒ ∀P ∈ R2[X] :

(
f ◦ f

)
(P) = f (P)

since f ◦ f : R2[X] −→ R2[X] and f : R2[X] −→ R2[X]
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Let P = a0 + a1X + a2X2
∈ R2[X]. Then,

f (P) = a1 − a2 + a1X + a2X2 = c0 + c1X + c2X2

where
c0 = a1 − a2, c1 = a1, c2 = a2.

Thus, we obtain(
f ◦ f

)
(P) = f ( f (P)) = f (c0 + c1X + c2X2) = c1 − c2 + c1X + c2X2 = a1 − a2 + a1X + a2X2 = f (P).

This proves that f ◦ f = f .
2. (i) We know that the kernel of f , denoted ker( f ), is defined by

ker( f ) =
{
P = a0 + a1X + a2X2

∈ R2[X] : f (P) = 0R2[X]

}
=

{
P = a0 + a1X + a2X2

∈ R2[X] : a1 − a2 + a1X + a2X2 = 0 + 0X + 0X2
}

=
{
P = a0 + a1X + a2X2

∈ R2[X] : a1 = a2 = 0
}

= {P = a0 = a0 · 1 : a0 ∈ R} (the kernel consists of constant polynomials)

= span(L1 = {R1 = 1})

is the vector subspace of R2[X] spanned by the family L1. Since, R1 = 1 , 0R2[X], so L1 is linearly
independent, and thus L1 forms a basis of ker( f ).

(ii) The image of f , denoted by Im( f ) or f (R2[X]), is the subset defined as

Im( f ) = f (E) =
{

f (P) : P = a0 + a1X + a2X2
∈ R2[X]

}
=

{
a1 − a2 + a1X + a2X2 : a1, a2 ∈ R2[X]

}
=

{
a1(X + 1) + a2(X2

− 1) : a1, a2 ∈ R2[X]
}

= {a1Q1 + a2Q2 : a1, a2 ∈ R2[X]}

= span(L2 = {Q1,Q2})

is the vector subspace of R2[X] spanned by the family L2.
Moreover, it is easy to verify that the family L2 is linearly independent. Hence, L2 is a basis for

Im( f ). We then obtain that the rank of f is :

rank( f ) = dim2061(Im( f )) = 2.

Other method : By the Rank Theorem, we have

dimR2[X] = dim(ker( f )) + dim(Im( f )) = dim(ker( f )) + rank( f ).

which implies
rank( f ) = dimR2[X] − dim(ker( f )) = 3 − 1 = 2

Exercise No. 3 :
Solution
1. Suppose f (L) is linearly independent in F. Consider scalars λ1, λ2, ..., λn ∈ K such that

λ1x1 + λ2x2 + ... + λnxn = 0E.

Applying f and using its linearity, we obtain

f (λ1x1 + λ2x2 + ... + λnxn) = λ1 f (x1) + λ2 f (x2) + ... + λn f (xn) = f (0E) = 0F.
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Since f (L) is linearly independent, it follows that all the scalars λ1, λ2, ..., λn are zero. Thus, L is
also linearly independent in E.
2. Suppose L is linearly independent in E and f is injective. Consider scalars λ1, λ2, ..., λn ∈ K such
that

λ1 f (x1) + λ2 f (x2) + ... + λn f (xn) = 0F,

then, by linearity of f ,
f (λ1x1 + λ2x2 + ... + λnxn) = f (0E).

Since f is injective,
λ1x1 + λ2x2 + ... + λnxn = 0E.

As L is linearly independent, all λ1, λ2, ..., λn must be zero. Thus, f (L) is linearly independent in F.

3. If L is linearly dependent in E, there exist scalars λ1, λ2, ..., λn, not all zero, such that

λ1x1 + λ2x2 + ... + λnxn = 0E.

Applying to both sides and using linearity, we obtain

f (λ1x1 + λ2x2 + ... + λnxn) = λ1 f (x1) + λ2 f (x2) + ... + λn f (xn) = f (0E) = 0F

Since at least one λi is nonzero, this implies that f (L) is linearly dependent in F.


