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Algebra II, Worksheet 1 answers

Exercise n’l :

Solution : We know that (EX, +,-) is a K—vector space if and only if it satisfies the following
axioms :

(a1) (EX, +) is a commutative group.

@)Va,BEKNfeEX:(a+B)-f=a-f+B-f.

@)VaeKVf,geEX:a-(f+g)=a-f+a-g.

@V, peKVfeE (a-p)-f=a-(B-f).

(@s)VfeEX:1x-f = f.

For (a;) : According to the assumption, (EX, +) is a commutative group. Thus, (a;) is verified.

For (ay) : Since the mappings (o + f) - f and a - f + - f have the same domain X and the same
codomain E, it suffices to show that

VxeX:((@+p)-f)x)=(a-f+B-f)).
Let x € X, then

((@+p)-f)(x)

(a + p) - f(x) (by definition of scalar multiplication)
a- f(x)+ B - f(x) (by distributivity in the field K)
(a-f)(x) + (B f)(x) (by definition of scalar multiplication on mappings)

(a- f+B-f)(x) (by definition of addition of mappings)

Thus,
@+p)-f=af+p-f
Hence, (a,) is verified. The remaining axioms (a3), (44), and (a5) can be verified similarly by evalua-
ting both sides of the equations at an arbitrary x € X and using the properties of the field K and
the operations on mappings.
Exercise n’2 :

Solution : We can prove these rules using the axioms of a vector space. Let x,y € E, a0, € K.
Then

1)

a-OE:a-(OE+OE):a-OE+a-OE
Subtracting « - O from both sides,
a-0g—a-0g=a-0g+a-0g—a-0F = 0g=a-0¢

and
OK-x:(OK+OK)-x:OK-x+0K-x

Subtracting Ok - x from both sides
Ok -x—0g-x=0g - x+0xk-x—0g - x =0 =0¢-x
2. (j) & : The converse implication follows directly from the first two properties.

*If a = Ok, then a - x = O by (1).
*If x = Og, then o - x = Og by (1).



(j)=>: Let us prove the direct implication. Suppose that
a-x = 0.

o If a = Ok, then there is nothing to prove (or if @ = Ox, we indeed have a = Ok or x = O)

o If a # O, then « is invertible in the field K. Multiplying both sides of the equality by a™*

, we get
al(a-x)=al 0

=>(oc_1-0c)-x=05
:>11K'XZOE.
=>x=OE.

Now, suppose that x # Og. Then, we necessarily have a = Ok, because otherwise (as above) we
could multiply the equality @ - x = O by a™!, which would imply x = Of, contradicting our
hypothesis.

(3). Using the distributive property of scalar multiplication over vector addition,

ax=a-[x-y)+yl=a-(x-y)+a-y
Subtracting « - y from both sides
a-x—a-y=a-x-y+a-y-—a-y=a-(x—y).
(4). We have
aox=[@-fp)+pl x=(a=p)x+fox
= a-x-pf-x=(@-p)-x+p-x—-Pf-x=(a-p)-x

Exercise n’3 :

Solution :

(a1) R?, equipped with these two operations, is not an R—vector space because the commuta-
tivity axiom of addition is not satisfied. Indeed,

(a,b) +(c,d)=(a+Db,b+d)and (c,d) + (a,b) = (c+d,d + D)
For example, choosing
(a,b) =(1,2) and (c,d) = (3,1)

we obtain
1+2#3+1

(a2) R?, equipped with these two operations, is not an R-vector space because axiom (2) is not
satisfied. Indeed, let &, B € R and (4, b) € R?, we have

(@+B)-(@b) = (a+p)a(a+B) b
On the other hand
a-(a,b)+B-(a,b)=((a+p)a,(a® + f*)b)
Since
(a+p) # (az + ﬁz) , (in general, except @ = 0 or = 0)

This shows that the required axiom is not satisfied.
(a3) R? equipped with these two operations is not a R-vector space because the commutativity
axiom for the addition operation + is not satisfied. Indeed,

(a,b) + (c,d) = (c,d) and (c,d) + (a,b) = (a,b)



For example, choosing
(a,b) = (1,2) and (c,d) = (3,1)

we obtain
3,1 #(1,2).

This shows that addition is not commutative under the given operation.
Exercise n’4 :
Solution : We know that

Fis a subspace of E <=

(@) O € F (F # ¢) (F contains the zero vector of E)
&= ! (b) Fis closed under the internal law (addition) ,Vx,y € F: x+y € F
(c) F is closed under the external law (scalar multiplication) VA € K,Vx € F: A -x € F.

(E){(a)OEeF

(b) F is closed under linear combinations, Yo, € K,Vx,y € F,:a-x+ -y € F.

For F; : Leta € R, then we distinguish the following cases :
(a) *Ifa # 0, then Ogs = (0,0,0) ¢ F1, which implies that F; is not a subspace of R®.
*If a = 0, then F; becomes

Fi={xy 2z €eE:x+y+z=0}.
It is clear that
Ors =(0,0,0) € Fy.

b) Let Xy = (x1,¥1,21), X2 € (x2,¥2,22) € F1 and a, B € R. Then, from the definition of F;, we
know

X1ty +2z1 = 0

{ Xo+ Yo +2p = 0

On the other hand, we have
a-Xi+p-Xo=(@-x1+p-x,a-y1+P-Ya,a 21+ 2)
We get
(a-xi+B-x)+(@-y+B-p)+a-z1+p-2)=
:a(x1+y1+z1)+ﬁ(x2+y2+zz)(20

Therefore, a - X; + B+ X5 € F1, which shows thatF; is indeed a subspace of R°.
For F, : (the set of even mappings) :
(a) We know that Oz r) = 0 is the zero mapping defined by

VxeR:0(x)=0

Therefore,
Vx e R:0(—x) =0(x) =0.

Thus, OT(]R,IR) € F,.
(b) Let a, p € Rand f, g € F,. Then, for all x € R, we have

{ f(=2)=f ()
g(=x) = g(x).
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Let x € R. Then

(@ - f+B-9)(=x)=(a-f)(0)+(B-9) (%) = a-f(=0)+p-g(=x) = a- f(X)+B-9(x) = (a- f + - 7) (x)

This implies that
(a-f+B-9)€F
Thus, F; is a subspace of ¥ (R, R).
The same method applies to show that F;(the set of odd mappings) is also a subspace of
7 (R, R).
For F, :
(a) We know that the zero polynomial Ogx) of IR[X], denoted by 0, is defined by

0=0+0X+0X>+..+..
Moreover, it satisfies
Orix1(0) = Ogrpx)(1) = 0.
Therefore, Ogx] € Fs..

(b) Let a, p € R and P4, P, € F,. By definition, these polynomials satisfy

P1(0) = P,(1) =0
P5(0) = P»(1) =0

Consider the linear combination « - P; + f - P,. We have

(Q'Pl +‘3P2)(0) :OC'P1(O)+‘B'P2(O) =0
and

(Ol'Pl +ﬁP2)(1) :Oé'Pl(l)-i-ﬁ'Pz(l) =0

Thus a - P; + - P, € F4. which proves that F, is a subspace of R [X].
For F5 : We recall that

(a) deg(0 = Ogx)) = —o0.( by convention)
| ® deg(P + Q) < max{deg(P), deg(Q)}.
ThQEKIXL Y €KY () deg(P.Q) = deg(P) + deg(Q).
(D)If o # Ok, then deg(aP) = deg(P).

, where K is a field .

(j) Since
deg(O = O]R[X]) = -0 <1,

it follows that Ogrx; € Fs.
(jj) Let P, Q € Fs. By definition of F5, we have

deg(P),deg(Q) <n

According to property (b) of the degree of a sum of polynomials
deg(P + Q) < max{deg(P),deg(Q)} =n

Thus, P+ Q € Fs.
(jjj) Let P € Fs,« € R. Then
deg(P) < n.

We distinguish two cases :
*Ifoz=0,then0¢-P:O]R[X] € Fs.



*If a # 0, then according to property (d) of the degree of a product by a nonzero scalar
deg(a - P) = deg(P) <n

Thus, a - P € Fs. This proves that F;5 is a subspace of R [X].
For F¢ :
We have
Fo={f € ¥ (R,R): f is bounded}

={feF (R R),IM € R*,¥x € R : |f(x)| < M}
(a) The zero mapping Ozr r) = 0 is bounded, since for all x € R,

0(x)| = 0] = 0 < M,YM € R*

Therefore, Oz®rRr) = 0 € Fo.
(b) Stability under linear combinations : Let a, f € R and f, g € Fe. By definition of Fs, we have

fx)
g(x)

<M,

<M,

AM; e Rt,¥x e R:
AM, e R*,Vx e R:

Then, for all x € IR,
@ f+B-9) )| < lal|f@)] + |p] [9(0)

<M; = |a| My + |p| Mz € R
Thus, a - f + B - g € F¢. This proves that Fg is a subspace of ¥ (R, R).



