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Exercise n˚1 :
Solution : We know that (EX,+, ·) is a K−vector space if and only if it satisfies the following

axioms :
(a1) (EX,+) is a commutative group.
(a2)∀α, β ∈ K,∀ f ∈ EX : (α + β) · f = α · f + β · f .
(a3)∀α ∈ K,∀ f , 1 ∈ EX : α ·

(
f + 1

)
= α · f + α · 1.

(a4)∀α, β ∈ K,∀ f ∈ EX : (α · β) · f = α ·
(
β · f

)
.

(a5)∀ f ∈ EX : 1K · f = f .
For (a1) : According to the assumption, (EX,+) is a commutative group. Thus, (a1) is verified.
For (a2) : Since the mappings (α + β) · f and α · f + β · f have the same domain X and the same

codomain E, it suffices to show that

∀x ∈ X :
(
(α + β) · f

)
(x) =

(
α · f + β · f

)
(x).

Let x ∈ X, then(
(α + β) · f

)
(x) = (α + β) · f (x) (by definition of scalar multiplication)

= α · f (x) + β · f (x) ( by distributivity in the field K)
=

(
α · f

)
(x) +

(
β · f

)
(x) (by definition of scalar multiplication on mappings)

=
(
α · f + β · f

)
(x) (by definition of addition of mappings)

Thus,
(α + β) · f = α · f + β · f .

Hence, (a2) is verified. The remaining axioms (a3), (a4), and (a5) can be verified similarly by evalua-
ting both sides of the equations at an arbitrary x ∈ X and using the properties of the field K and
the operations on mappings.

Exercise n˚2 :
Solution : We can prove these rules using the axioms of a vector space. Let x, y ∈ E, α, β ∈ K.

Then
(1)

α · 0E = α · (0E + 0E) = α · 0E + α · 0E

Subtracting α · 0E from both sides,

α · 0E − α · 0E = α · 0E + α · 0E − α · 0E =⇒ 0E = α · 0E

and
0K · x = (0K + 0K) · x = 0K · x + 0K · x

Subtracting 0K · x from both sides

0K · x − 0K · x = 0K · x + 0K · x − 0K · x =⇒ 0E = 0K · x

2. (j)⇐= : The converse implication follows directly from the first two properties.
* If α = 0K, then α · x = 0E by (1).
* If x = 0E, then α · x = 0E by (1).
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(j)=⇒: Let us prove the direct implication. Suppose that

α · x = 0E.

• If α = 0K, then there is nothing to prove (or if α = 0K, we indeed have α = 0K or x = 0E)
• If α , 0K, then α is invertible in the fieldK. Multiplying both sides of the equality by α−1, we get

α−1
· (α · x) = α−1

· 0E

=⇒
(
α−1
· α

)
· x = 0E

=⇒ 1K · x = 0E.

=⇒ x = 0E.

Now, suppose that x , 0E. Then, we necessarily have α = 0K, because otherwise (as above) we
could multiply the equality α · x = 0E by α−1, which would imply x = 0E, contradicting our
hypothesis.
(3). Using the distributive property of scalar multiplication over vector addition,

α · x = α ·
[(

x − y
)

+ y
]

= α ·
(
x − y

)
+ α · y

Subtracting α · y from both sides

α · x − α · y = α ·
(
x − y

)
+ α · y − α · y = α ·

(
x − y

)
.

(4). We have
α · x =

[(
α − β

)
+ β

]
· x =

(
α − β

)
· x + β · x

=⇒ α · x − β · x =
(
α − β

)
· x + β · x − β · x =

(
α − β

)
· x.

Exercise n˚3 :
Solution :
(a1) R2, equipped with these two operations, is not an R−vector space because the commuta-

tivity axiom of addition is not satisfied. Indeed,

(a, b) + (c, d) = (a + b, b + d) and (c, d) + (a, b) = (c + d, d + b)

For example, choosing
(a, b) = (1, 2) and (c, d) = (3, 1)

we obtain
1 + 2 , 3 + 1

(a2) R2, equipped with these two operations, is not an R-vector space because axiom (2) is not
satisfied. Indeed, let α, β ∈ R and (a, b) ∈ R2, we have(

α + β
)
· (a, b) = (

(
α + β

)2 a,
(
α + β

)2 b)

On the other hand
α · (a, b) + β · (a, b) =

((
α2 + β2

)
a,

(
α2 + β2

)
b
)

Since (
α + β

)2 ,
(
α2 + β2

)
, (in general, except α = 0 or β = 0)

This shows that the required axiom is not satisfied.
(a3)R2 equipped with these two operations is not aR-vector space because the commutativity

axiom for the addition operation + is not satisfied. Indeed,

(a, b) + (c, d) = (c, d) and (c, d) + (a, b) = (a, b)
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For example, choosing
(a, b) = (1, 2) and (c, d) = (3, 1)

we obtain
(3, 1) , (1, 2).

This shows that addition is not commutative under the given operation.
Exercise n˚4 :
Solution : We know that

F is a subspace of E ⇐⇒

⇐⇒


(a) 0E ∈ F (F , φ) (F contains the zero vector of E)
(b) F is closed under the internal law (addition) , ∀x, y ∈ F : x + y ∈ F
(c) F is closed under the external law (scalar multiplication) ∀λ ∈ K,∀x ∈ F : λ · x ∈ F.

⇐⇒

{
(a) 0E ∈ F
(b) F is closed under linear combinations, ∀α, β ∈ K,∀x, y ∈ F, : α · x + β · y ∈ F.

For F1 : Let a ∈ R, then we distinguish the following cases :
(a) * If a , 0, then 0R3 = (0, 0, 0) < F1, which implies that F1 is not a subspace of R3.
* If a = 0, then F1 becomes

F1 =
{
(x, y, z) ∈ E : x + y + z = 0

}
.

It is clear that
0R3 = (0, 0, 0) ∈ F1.

b) Let X1 = (x1, y1, z1),X2 ∈ (x2, y2, z2) ∈ F1 and α, β ∈ R. Then, from the definition of F1, we
know {

x1 + y1 + z1 = 0
x2 + y2 + z2 = 0 .........(∗)

On the other hand, we have

α · X1 + β · X2 = (α · x1 + β · x2, α · y1 + β · y2, α · z1 + β · z2)

We get (
α · x1 + β · x2

)
+

(
α · y1 + β · y2

)
+ α · z1 + β · z2) =

= α
(
x1 + y1 + z1

)
+ β

(
x2 + y2 + z2

) (∗)
= 0

Therefore, α · X1 + β · X2 ∈ F1, which shows thatF1 is indeed a subspace of R3.
For F2 : (the set of even mappings) :
(a) We know that 0F (R,R) = 0 is the zero mapping defined by

∀x ∈ R : 0(x) = 0

Therefore,
∀x ∈ R : 0(−x) = 0(x) = 0.

Thus, 0F (R,R) ∈ F2.
(b) Let α, β ∈ R and f , 1 ∈ F2. Then, for all x ∈ R, we have{

f (−x) = f (x)
1(−x) = 1(x).
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Let x ∈ R. Then(
α · f + β · 1

)
(−x) =

(
α · f

)
(−x)+

(
β · 1

)
(−x) = α · f (−x)+β ·1(−x) = α · f (x)+β ·1(x) =

(
α · f + β · 1

)
(x)

This implies that (
α · f + β · 1

)
∈ F2

Thus, F2 is a subspace of F (R,R) .
The same method applies to show that F3(the set of odd mappings) is also a subspace of

F (R,R).
For F4 :
(a) We know that the zero polynomial 0R[X] of R[X], denoted by 0, is defined by

0 = 0 + 0.X + 0.X2 + ... + ....

Moreover, it satisfies
0R[X](0) = 0R[X](1) = 0.

Therefore, 0R[X] ∈ F4..
(b) Let α, β ∈ R and P1,P2 ∈ F4. By definition, these polynomials satisfy{

P1(0) = P1(1) = 0
P2(0) = P2(1) = 0

Consider the linear combination α · P1 + β · P2. We have(
α · P1 + β · P2

)
(0) = α · P1(0) + β · P2(0) = 0

and (
α · P1 + β · P2

)
(1) = α · P1(1) + β · P2(1) = 0

Thus α · P1 + β · P2 ∈ F4. which proves that F4 is a subspace of R [X].
For F5 : We recall that

∀P,Q ∈ K[X],∀α ∈ K :


(a) deg(0 = 0K[X]) = −∞.( by convention)
(b) deg(P + Q) ≤ max

{
deg(P),deg(Q)

}
.

(c) deg(P.Q) = deg(P) + deg(Q).
(d)If α , 0K, then deg(αP) = deg(P).

, where K is a field .

(j) Since
deg(0 = 0R[X]) = −∞ ≤ n,

it follows that 0R[X] ∈ F5.
(jj) Let P,Q ∈ F5. By definition of F5, we have

deg(P),deg(Q) ≤ n

According to property (b) of the degree of a sum of polynomials

deg(P + Q) ≤ max
{
deg(P),deg(Q)

}
= n

Thus, P + Q ∈ F5.
(jjj) Let P ∈ F5, α ∈ R. Then

deg(P) ≤ n.

We distinguish two cases :
* If α = 0, then α · P = 0R[X] ∈ F5.
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* If α , 0, then according to property (d) of the degree of a product by a nonzero scalar

deg(α · P) = deg(P) ≤ n

Thus, α · P ∈ F5. This proves that F5 is a subspace of R [X].
For F6 :
We have

F6 =
{
f ∈ F (R,R) : f is bounded

}
=

{
f ∈ F (R,R) ,∃M ∈ R+,∀x ∈ R :

∣∣∣ f (x)
∣∣∣ ≤M

}
(a) The zero mapping 0F (R,R) = 0 is bounded, since for all x ∈ R,

|0(x)| = |0| = 0 ≤M,∀M ∈ R+

Therefore, 0F (R,R) = 0 ∈ F6.
(b) Stability under linear combinations : Let α, β ∈ R and f , 1 ∈ F6. By definition of F6, we have{

∃M1 ∈ R+,∀x ∈ R :
∣∣∣ f (x)

∣∣∣ ≤M1

∃M2 ∈ R+,∀x ∈ R :
∣∣∣1(x)

∣∣∣ ≤M2

Then, for all x ∈ R, ∣∣∣(α · f + β · 1
)

(x)
∣∣∣ ≤ |α| ∣∣∣ f (x)

∣∣∣ +
∣∣∣β∣∣∣ ∣∣∣1(x)

∣∣∣
≤M3 := |α|M1 +

∣∣∣β∣∣∣ M2 ∈ R
+

Thus, α · f + β · 1 ∈ F6. This proves that F6 is a subspace of F (R,R).


