Algebra II, Worksheet 2

Exercise n°1 :

(1) Find the value of $a \in \mathbb{R}$ for which the vector x = (1, 1, 2) in \mathbb{R}^3 can be written as a linear combination of the vectors $x_1 = (1, -1, 1)$ and $x_2 = (0, 1, a)$.

(2) Let *E* be a K-vector space. Suppose the family of vectors $A = \{v_1, v_2, v_3, v_4\}$ in *E* is linearly independent. Show that the family of vectors $B = \{e_1 = v_1, e_2 = v_1 + v_2, e_3 = v_1 + v_2 + v_3, e_4 = v_1 + v_2 + v_3 + v_4\}$ is also linearly independent.

(3) Let *E* be a \mathbb{K} -vector space, and let F_1 and F_2 be two subspaces of *E*. Their sum is defined as

$$F_1 + F_2 = \{x \in E, \exists x_1 \in F_1, \exists x_2 \in F_1 : x = x_1 + x_2\}$$

(a) Prove that $F_1 + F_2$ is a subspace of *E*.

Exercise \mathbf{n}^2 : Let $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the space of all mappings from \mathbb{R} to \mathbb{R} . Define $F = span(B) = \langle B \rangle$, where $B = \{f_1, f_2\}$ and f_1, f_2 are mappings defined by

 $\forall x \in \mathbb{R} : f_1(x) = \cos x, f_2(x) = \sin x$

(1). Show that $B = \{f_1, f_2\}$ is a linearly independent family in *E*.

(2). Let α and β be fixed real numbers. Define the mappings *f* and *f* as follows

$$\forall x \in \mathbb{R} : f(x) = \cos(x + \alpha), g(x) = \sin(x + \beta)$$

(a). Prove that *f* and *g* belong to *F*, and determine their coordinates in the basis *B* of *F*. <u>Exercise $n^{\circ}3$ </u> : We consider the following subspaces of \mathbb{R}^4

$$F = \{(x, y, z, t) \in \mathbb{R}^4 : 2x + y = 0 \text{ and } -x + 3z - t = 0\}, G = \{(x, y, z, t) \in \mathbb{R}^4 : x + 2y + 3z + t = 0\}$$

- 1. Find a basis for each of the subspaces *F* and *G*.
- 2. Determine the intersection $F \cap G$ and deduce a basis for $F \cap G$.

3. Compute the dimensions $\dim F$, $\dim G$, $\dim F + G$.

Exercise $\mathbf{n}^{\circ}4$: Let $\mathcal{F}(\mathbb{R},\mathbb{R})$ denote the vector space over \mathbb{R} of all mappings from \mathbb{R} to \mathbb{R} . Let $EV(\mathbb{R},\mathbb{R})$ and $OD(\mathbb{R},\mathbb{R})$ be the subspaces of $\mathcal{F}(\mathbb{R},\mathbb{R})$ consisting of even and odd mappings from \mathbb{R} to \mathbb{R} , respectively, defined by

$$EV(\mathbb{R},\mathbb{R}) = \{ f \in \mathcal{F}(\mathbb{R},\mathbb{R}), \forall x \in \mathbb{R} : f(-x) = f(x) \}, OD(\mathbb{R},\mathbb{R}) = \{ f \in \mathcal{F}(\mathbb{R},\mathbb{R}), \forall x \in \mathbb{R} : f(-x) = -f(x) \} \}$$

1. Let $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. Define two mappings f_1 and f_2 in $\mathcal{F}(\mathbb{R}, \mathbb{R})$ as follows

$$\forall x \in \mathbb{R} : f_1(x) = \frac{1}{2} [f(x) + f(-x)] \text{ and } f_2(x) = \frac{1}{2} [f(x) - f(-x)].$$

(a) Prove that f_1 is even and f_2 is odd. Deduce that $\mathcal{F}(\mathbb{R},\mathbb{R}) = EV(\mathbb{R},\mathbb{R}) + OD(\mathbb{R},\mathbb{R})$.

(b) Show that $EV(\mathbb{R}, \mathbb{R})$ and $OD(\mathbb{R}, \mathbb{R})$ are complementary in $\mathcal{F}(\mathbb{R}, \mathbb{R})$, i.e., $\mathcal{F}(\mathbb{R}, \mathbb{R}) = EV(\mathbb{R}, \mathbb{R}) \oplus OD(\mathbb{R}, \mathbb{R})$.

Exercise $n^{\circ}5$: (Supplementary Exercise) Let $F_1 = span(L_1) = \langle L_1 \rangle$ and $F_2 = span(L_2) = \langle L_2 \rangle$ be the vector subspaces of \mathbb{R}^3 generated (or spanned) respectively by the families $L_1 = \{a_1 = (0, -1, 1), a_2 = (1, 1, 1)\}$ and $L_2 = \{b_1 = (1, -1, 1), b_2 = (1, -1, -1)\}$.

1. Determine a generating family L_3 for $F_1 + F_2$.

2. Find the dimensions of F_1 , F_2 , $F_1 + F_2$ and $F_1 \cap F_2$.