Abdelhafid Boussouf University Center, Mila Institute of Mathematics and Computer Sciences First year of Computer Science License 2024/2025

Algebra II, Worksheet 3

Exercise No. 1:

1. Let *E*, *F*, *G* be three \mathbb{K} -vector spaces. Consider two linear mappings $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ and $g \in \mathcal{L}_{\mathbb{K}}(F, G)$. Show that the composition $g \circ f$ is a linear mapping, that is, $g \circ f \in \mathcal{L}_{\mathbb{K}}(E, G)$.

2. Let $B = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ be the canonical basis of \mathbb{R}^3 . Consider the linear mapping $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by

$$f(e_1) = \frac{1}{3} \left(-e_1 + 2e_2 + 2e_3 \right), f(e_2) = \frac{1}{3} \left(2e_1 - e_2 + 2e_3 \right), f(e_3) = \frac{1}{3} \left(2e_1 + 2e_2 - e_3 \right)$$

(a) Determine the explicit expression of the linear mapping f.

(b) Consider the subspaces of \mathbb{R}^3 defined by

$$F_1 = \{ v \in \mathbb{R}^3 : f(v) = -v \}$$
 and $F_2 = \{ v \in \mathbb{R}^3 : f(v) = v \}.$

(i) Show that F_1 and F_2 are vector subspaces of \mathbb{R}^3 .

(j) Verify that $v_1 = e_1 - e_2$ and $v_2 = e_1 - e_3$ belong to F_1 , and that $v_3 = e_1 + e_2 + e_3$ belongs to F_2 .

(k) Show that the family $B' = \{v_1 = e_1 - e_2, v_2 = e_1 - e_3, v_3 = e_1 + e_2 + e_3\}$ forms a new basis of \mathbb{R}^3 . (l) Compute $f^2 = f \circ f$ and deduce that f is bijective, and determine its inverse f^{-1} .

Exercise No. 2 : Let $\mathbb{R}_2[X] = \{P \in \mathbb{R}[X] : \deg(P) \leq 2\}$ be the vector space of polynomials with real coefficients of degree less than or equal to 2. We define the mapping *f* on $\mathbb{R}_2[X]$ by

$$\forall P \in \mathbb{R}_2[X] : f(P) = -\frac{(X+1)^2}{2}P^{(2)} + (X+1)P^{(1)}$$

where $P^{(1)}$ and $P^{(2)}$ denote the first and second derivatives of *P*, respectively.

1. Prove that *f* is an endomorphism of $\mathbb{R}_2[X]$ and show that it satisfies $f \circ f = f$.

2. Construct a basis for each of the vector subspaces ker(f) and Im(f). Deduce the rank of f.

Exercise No. 3 : Let *E* and *F* be two vector spaces over a field \mathbb{K} , and let $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ be a linear mapping. Consider a family of vectors $L = \{x_1, x_2, ..., x_n\}$ in *E*. Prove the following : 1. If f(L) is linearly independent in *F*, then *L* is also linearly independent in *E*.

2. If *L* is linearly independent in *E* and *f* is injective, then f(L) is linearly independent in *F*.

3. If *L* is linearly dependent in *E*, then f(L) is also linearly dependent in *F*.

Exercise No. 4 : (Supplementary Exercise) Let *E* be a vector space over a field \mathbb{K} . Consider an endomorphism $f : E \longrightarrow E$ such that $f^2 = f \circ f = Id_E$. Define the subspaces $F_1 = \ker(f - Id_E)$ and $F_2 = \ker(f + Id_E)$.

1. Compute $f(x_1)$ and $f(x_2)$ for any $x_1 \in F_1$ and any $x_2 \in F_2$.

2. Prove that $E = F_1 \oplus F_2$.

Exercise No. 5 : (Supplementary Exercise) Let $\mathbb{R}_2[X] = \{P \in \mathbb{R}[X] : \deg(P) \leq 2\}$ be the vector space of polynomials with real coefficients of degree less than or equal to 2. We define the mapping $f : \mathbb{R}_2[X] \longrightarrow \mathbb{R}$ by

$$\forall P = aX^2 + bX + c \in \mathbb{R}_2[X] : f(P) = a + b\sqrt{2}$$

1. Prove that *f* is a linear mapping.

2. Determine ker(*f*) the kernel of *f* and show that $L = \{P_1 = 1, P_2 = \sqrt{2}X^2 - X\}$ forms a basis of ker(*f*).

3. Prove that $B' = \{Q_1 = 1, Q_2 = \sqrt{2}X^2 - X, Q_3 = \frac{1}{\sqrt{2}}X\}$ is a basis of $\mathbb{R}_2[X]$.

4. Consider the linear mapping $g : \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$ defined by

$$g(Q_1) = g(Q_2) = 0, g(Q_3) = Q_3$$

(a) Show that $g \circ g = g$ and determine ker(g) the kernel of g.