Abdelhafid Boussouf University Center, Mila **Institute of Mathematics and Computer Sciences** First year of Computer Science License 2024/2025 Algebra II, Worksheet 4

Exercise No. 1: Consider the following matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

1. Compute the powers A^2 , A^3 . Deduce the expression for A^n for all integers $n \ge 3$.

2. For every real number $x \in \mathbb{R}$, define the matrix $M(x) = I_3 + xA + \frac{x^2}{2}A^2$.

(a) Express the matrix M(x) explicitly.

(b) Prove that $\forall x, y \in \mathbb{R}$: $M(x) \cdot M(y) = M(x + y)$. Determine a real number $x' \in \mathbb{R}$ such that $M(x) \cdot M(x') = I_3$. Deduce that M(x) is invertible and determine $M(x)^{-1}$.

Exercise No. 2: Let $E = \mathcal{M}_n(\mathbb{R})$ be the vector space of square matrices of order *n* with real entries. Consider two subsets F_1 and F_2 of E defined by

$$F_1 = \left\{ A \in \mathcal{M}_n(\mathbb{R}) : {}^t A = A \right\}, F_2 = \left\{ A \in \mathcal{M}_n(\mathbb{R}) : {}^t A = -A \right\}$$

where ${}^{t}A$ denotes the transpose of matrix A.

1. Prove that F_1 and F_2 are vector subspaces of $\mathcal{M}_n(\mathbb{R})$.

2. For any matrix $A \in \mathcal{M}_n(\mathbb{R})$, show that $B_1 = \frac{1}{2}(^tA + A) \in F_1$ and $B_2 = \frac{1}{2}(A - ^tA) \in F_2$.

3. Let $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, decompose *A* as the sum of a matrix in F_1 and a matrix in F_2 . **Exercise No. 3 :** Consider the linear mapping *f* defined by

$$\begin{array}{cccc} f: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ & (x,y,z) & \longmapsto & f(x,y,z) = (3x-y+z,-x-2y-5z,x+y+3z) \end{array}$$

Let $B = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ be the canonical (or standard) basis of \mathbb{R}^3 . 1. Find the matrix A = Mat(f) associated with f with respect to the basis B.

2. Let $B' = \{e'_1 = (-4, 1, 3), e'_2 = (2, 0, -1), e'_3 = (-1, 1, 1)\}$ be a new basis of \mathbb{R}^3 .

(a) Determine the change-of-basis matrix P from B to B' and compute its inverse P^{-1} .

(b) For the vector $v = (1, 2, -1) \in \mathbb{R}^3$, find the coordinates of v in the new basis B'.

(c) Compute the matrix A' = Mat(f) associated with f with respect to the basis B'.

Exercise No. 4 : (Supplementary Exercise) Let $E = M_2(\mathbb{R})$ be the vector space over \mathbb{R} of square matrices of order 2 with real entries defined as $E = M_2(\mathbb{R}) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$ 1. Find a basis *B* of $M_2(\mathbb{R})$.

2. Consider a matrix $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in M_2(\mathbb{R})$ and a linear mapping $f : M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$ defined by

$$\forall A \in M_2(\mathbb{R}) : f(A) = M \cdot A.$$

a) Prove that f is linear and find $D = M_{B}at(f)$, the matrix associated with f relative to the basis B. **Exercise No. 5 : (Supplementary Exercise)** Consider the linear mapping $f : \mathbb{R}_{2}[X] \longrightarrow \mathbb{R}_{2}[X]$ defined by

$$\forall P \in \mathbb{R}_2[X] : f(P) = P^{(1)} - (X+1)P^{(2)}$$

where $P^{(1)}$ and $P^{(2)}$ denote the first and second derivatives of *P*, respectively.

1. Prove that f is a linear mapping. Determine the kernel ker(f), the image Im(f), and their respective dimensions. Is *f* injective? Surjective?.

2. Find the matrix A = Mat(f) associated with f with respect to the canonical basis B.

3. Let $B' = \{Q_0 = X - 1, Q_1 = X^2 - 1, Q_2 = X^2 + 1\}$ be a new basis of $\mathbb{R}_2[X]$.

(a) Compute the change-of-basis matrix *H* from *B* to *B'*, and find H^{-1} . Determine the coordinates of the polynomial $P = 1 + X + X^2$ in the basis *B*'.