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Algebra II, Worksheet 2 answers

Exercise n˚1 :

Solution :
1. The vector x = (1, 1, 2) is a linear combination of x1 = (1,−1, 1) and x2 = (0, 1, a) if and only if

there exist scalars α1, α2 ∈ R such that

x = α1x1 + α2x2

This leads to the following system of equations
α1 = 1
−α1 + α2 = 1
α1 + aα2 = 2

Solving this system, we obtain the solution
[
a = 1

2 , α1 = 1, α2 = 2
]
.

2. Assume that the family of vectors A = {v1, v2, v3, v4} is linearly independent. Then, the family
B = {e1, e2, e3, e4} is linearly independent if and only if the following condition holds

∀α1, α2, α3, α4 ∈ K : α1e1 + α2e2 + α3e3 + α4e4 = 0E =⇒ α1 = α2 = α3 = α4 = 0K.

Let α1, α2, α3, α4 ∈ K, then

α1e1 + α2e2 + α3e3 + α4e4 = 0E =⇒ (α1 + α2 + α3 + α4) v1 + (α2 + α3 + α4) v2 + (α3 + α4) v3 + α4v4 = 0E

Since A = {v1, v2, v3, v4} is linearly independent, the coefficients must satisfy
α1 + α2 + α3 + α4 = 0K

α2 + α3 + α4 = 0K

α3 + α4 = 0K

α4 = 0K

Solving this system, we deduce that

α1 = α2 = α3 = α4 = 0K.

which proves that the family B is linearly independent.
3. We now show that F1 + F2 = F is a vector subspace of E.
(a) Non-empty : Since F1 and F2 are subspaces, they both contain 0E. Hence,

0E = 0E + 0E ∈ F1 + F2.

Thus, F1 + F2 is non-empty set.
(b) Closed under addition : Let x, y ∈ F, so there exist a1, b1 ∈ F1 and a2, b2 ∈ F2 such that{

x = a1 + a2

y = b1 + b2

=⇒ x + y = (a1 + a2) + (b1 + b2) =
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= (a1 + b1) + (a2 + b2) (Since addition in E is commutative and associative)

Since F1 and F2 are vector subspaces, a3 = (a1 + b1) ∈ F1 and b3 = (a2 + b2) ∈ F2. Thus, x + y =
a3 + b3 ∈ F, proving that F is closed under addition.

(c) Closed under scalar multiplication : Let α ∈ K and x = x1 + x2 ∈ F with x1 ∈ F1 and x2 ∈ F2.
Then,

αx = α (x1 + x2) = αx1 + αx2.

Since F1 and F2 are vector subspaces, αx1 ∈ F1 and αx2 ∈ F2. Thus, αx ∈ F, proving that F is closed
under scalar multiplication. Then F is a vector subspace of E.

Exercise n˚2 : Solution
1. A set B = { f1, f2} is linearly independent if and only if

∀α1, α2 ∈ R : α1 f1 + α2 f2 = 0F (R,R) =⇒ α1 = α2 = 0.

where 0F (R,R) denotes the zero mapping.
Consider the equation α1 f1 +α2 f2 = 0F (R,R) in the space F (R,R). This equation is equivalent to

∀x ∈ R : α1 f1(x) + α2 f2(x) = 0

By choosing specific values : x = 0 and x = π
2 , we obtain α1 = 0 and α2 = 0, respectively. Thus, the

family B is linearly independent, and we conclude that B forms a basis for F.
2. (b) We know that f belongs to the vector subspace F spanned (or generated) by the family

B, denoted span(B) or < B > , if and only if there exist scalars α1, α2 ∈ R such that

f = λ1 f1 + λ2 f2

⇐⇒ ∀x ∈ R : f (x) = λ1 f1(x) + λ2 f2(x)

For any x ∈ R, using trigonometric identities, we can express f (x) as

f (x) = cos(x + α) = cos x. cosα − sin x. sinα

= λ1 cos x + λ2 sin x, where λ1 = cosα and λ2 = − sinα are constants in R

This shows that f ∈ F. The coordinates of f in the basis B of F are given by the pair (cosα,− sinα).
Similarly, for the mapping 1, we have

1(x) = sin(x + β) = sin x. cos β + cos x. sin β

= λ1 cos x + λ2 sin x, where λ1 = sin β and λ2 = cos β are constants in R

This implies that 1 ∈ F. The coordinates of 1 in the basis B of F are given by the pair (sin β, cos β).
Exercise n˚3 :
Solution : To determine a basis of a vector subspace F, we first try to obtain a spanning family

for F and then show that this family is linearly independent. Thus,

F =
{
X =

(
x, y, z, t

)
∈ R4 : y = −2x and − x + 3z = t

}
= {X = (x,−2x, z,−x + 3z) : x, z ∈ R}

= {X = x (1,−2, 0,−1) + z (0, 0, 1, 3) : x, z ∈ R} = 〈LF = {a = (1,−2, 0,−1) , b = (0, 0, 1, 3)}〉

= Span {LF = {a = (1,−2, 0,−1) , b = (0, 0, 1, 3)}}

Thus, F is a subspace ofR4 spanned by the family of vectors LF = {a = (1,−2, 0,−1) , b = (0, 0, 1, 3)}.
Moreover, it is easy to verify that LF is linearly independent. Therefore, LF forms a basis of F, and
it follows that dim(F) = Card(LF) = 2.
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Similarly, for G we find that G is a subspace of R4 spanned by the family of vectors

LG = {c = (−2, 1, 0, 0) , d = (−3, 0, 1, 0) , v = (−1, 0, 0, 1)}

Moreover, it is easy to verify that LG is linearly independent. Therefore, LG forms a basis of G,
which implies that dim(G) = Card(LG) = 3.

2. We have

F ∩ G =
{
X =

(
x, y, z, t

)
∈ R4 : X ∈ F and X ∈ G

}
=

=
{
X =

(
x, y, z, t

)
∈ R4 : 2x + y = 0,−x + 3z − t = 0, x + 2y + 3z + t = 0

}
=

{
X =

(
x, y, z, t

)
∈ R4 : x =

3
2

z, y = −3z, t =
3
2

z
}

(b) Basis of F ∩ G : we have

F ∩ G =
{
X =

(3
2

z,−3z, z,
3
2

z
)

: z ∈ R
}

= span
(
LF∩G =

{
m =

(3
2
,−3, 1,

3
2

)})
.

Thus, F ∩ G is a subspace of R4 generated by the family LF∩G =
{
m =

(
3
2 ,−3, 1, 3

2

)}
. Since m , 0R4 ,

the set F∩G is linearly independent. Therefore, LF∩G forms a basis of F∩G and we conclude that
dim(F ∩ G) = Card(LF∩G) = 1.

3) According to Grassmann’s formula, we have

dim(F + G) = dim(F) + dim(G) − dim(F ∩ G) = 2 + 3 − 1 = 4.

Exercise n˚4 : Solution
1. (a) Let x ∈ R, then{

f1(−x) = 1
2

[
f (−x) + f (x)

]
= f1(x)

f2(−x) = 1
2

[
f (−x) − f (x)

]
= −1

2

[
f (x) − f (−x)

]
= − f2(x)

Thus, f1 is even and f2 is odd.
Now, let’s prove that

EV (R,R) + OD (R,R) = F (R,R) .

j) Since EV (R,R) + OD (R,R) is a subspace of F (R,R), we have

EV (R,R) + OD (R,R) ⊂ F (R,R) .

(jj) On the other hand, let f ∈ F (R,R), then

f ∈ EV (R,R) + OD (R,R) ⊂ F (R,R)⇐⇒ ∃11 ∈ EV (R,R) ,∃12 ∈ = (R,R) : f = 11 + 12

⇐⇒ ∃11 ∈ EV (R,R) ,∃12 ∈ = (R,R) ,∀x ∈ R : f (x) = 11(x) + 12(x).

For any f ∈ F (R,R) and any x ∈ R, we can write

f (x) =
1
2

( f (x)+ f (x)) =
1
2

( f (x)+ f (−x)− f (−x)+ f (x)) =
1
2

( f (x)+ f (−x))+
1
2

( f (x)− f (−x)) = ϕ1(x)+ϕ2(x)

where
ϕ1(x) =

1
2

( f (x) + f (−x)) = f1(x), ϕ2(x) =
1
2

( f (x) − f (−x)) = f2(x).

Since f1 ∈ EV (R,R) , f2 ∈ OD (R,R), we conclude that

∃11 = f1 ∈ EV (R,R) ,∃12 = f2 ∈ OD (R,R) : f = 11 + 12
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=⇒ f ∈ EV (R,R) + OD (R,R)

Thus
F (R,R) ⊂ EV (R,R) + OD (R,R) .

Since we have both inclusions, we conclude

EV (R,R) + OD (R,R) = F (R,R) .

(b) We know that the subspaces EV (R,R) and OD (R,R) are complementary in F (R,R) if and
only if their direct sum equals F (R,R). That is,

F (R,R) = EV (R,R) ⊕OD (R,R) ⇐⇒

⇐⇒

{
j)EV (R,R) ∩OD (R,R) =

{
0F (R,R)

}
j j)F (R,R) = EV (R,R) + OD (R,R) .

(j) Since EV (R,R) ∩ OD (R,R) is a subspace of F (R,R), so the zero mapping 0F (R,R) belongs to
both EV (R,R) and OD (R,R), it follows that{

0F (R,R)
}
⊂ EV (R,R) ∩OD (R,R) .

Now, let f ∈ F (R,R), then

f ∈ EV (R,R) ∩OD (R,R) =⇒


f ∈ EV (R,R)

and
f ∈ OD (R,R)

=⇒


f (x) = f (−x)

and
f (x) = − f (−x)

,∀x ∈ R.

=⇒ 2 f (x) = 0,∀x ∈ R

=⇒ f (x) = 0,∀x ∈ R

=⇒ f = 0F (R,R) ∈
{
0F (R,R)

}
=⇒ EV (R,R) ∩OD (R,R) ⊂

{
0F (R,R)

}
.

Since we have both inclusions, we conclude

EV (R,R) ∩OD (R,R) =
{
0F (R,R)

}
.

(jj) Since from part (a), we have F (R,R) = EV (R,R) + OD (R,R), it follows that

F (R,R) = EV (R,R) ⊕OD (R,R)


