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Algebra II, Worksheet 2 answers

Exercise n’1 :

Solution :
1. The vector x = (1,1, 2) is a linear combination of x; = (1,-1,1) and x, = (0, 1, 4) if and only if
there exist scalars a1, a, € IR such that

X = 1X1 + qrXp
This leads to the following system of equations
a1 = 1

—a1+a,=1
o +an, =2

Solving this system, we obtain the solution [a = %, ap=1,a, = 2] .
2. Assume that the family of vectors A = {v;, v5, U3, v4} is linearly independent. Then, the family
B = {ey, 5, €3, €4} is linearly independent if and only if the following condition holds

VOél,(XQ,OC3,0(4 ekK: 161 + g8y + (X363 + (Xg€4 = OE = A1 =0 =03 = g4 = OK.
Let a1, ap, a3, a4 € K, then
are1 + axer + azes + agey = 0F = (1 + a0 + a3 + ) 01 + (A + a3 + ay) U2 + (a3 + ag) V3 + 404 = Of
Since A = {vy, v2, 3, v4} is linearly independent, the coefficients must satisfy
a1+0(2+0(3+6¥4201<
Ay + a3+ g = Ox
asz + ay = 0g
ag = Ok
Solving this system, we deduce that
0(1:0(2:05326(4:()[(.

which proves that the family B is linearly independent.
3. We now show that F; + F, = F is a vector subspace of E.
(a) Non-empty : Since F; and F, are subspaces, they both contain 0r. Hence,

O =0+ 0 € F; + F>.

Thus, F; + F, is non-empty set.
(b) Closed under addition : Let x, y € F, so there exist a;,b; € F; and a,, b, € F; such that

X=a;+ap
y=b1+b2

:>X+y:(ﬂ1+llz)+(b1+b2):



= (a1 + b1) + (ax + by) (Since addition in E is commutative and associative)

Since F; and F, are vector subspaces, a3 = (a1 + b;) € Fy and b; = (a2 + by) € F,. Thus, x + y =
a3 + bs € F, proving that F is closed under addition.

(c) Closed under scalar multiplication : Let « € Kand x = x; + x, € F with x; € F; and x; € F,.
Then,

ax = a(x1 + xp) = ax; + axs.

Since F; and F; are vector subspaces, ax; € F; and ax; € F,. Thus, ax € F, proving that F is closed
under scalar multiplication. Then F is a vector subspace of E.

Exercise n"2 : Solution

1. A set B = {f;, f»} is linearly independent if and only if

Yai,a, €R: alfl + 0(2f2 = 077(]1{,11}) = a;=a, =0.

where Oz r) denotes the zero mapping.
Consider the equation a; f1 + @, f» = OF(r ) in the space ¥ (IR, R). This equation is equivalent to

VxeR:agfi(x) + azfa(x) =0

By choosing specific values : x = 0 and x = 7, we obtain a; = 0 and a, = 0, respectively. Thus, the
family B is linearly independent, and we conclude that B forms a basis for F.

2. (b) We know that f belongs to the vector subspace F spanned (or generated) by the family
B, denoted span(B) or < B >, if and only if there exist scalars ay, a; € R such that

f=MA+MNf
— VxelR: f(X) = Alfl(X) + /\zfz(X)

For any x € R, using trigonometric identities, we can express f(x) as
f(x) = cos(x + a) = cosx.cosa — sinx.sina

= Ajcosx + Aysinx, where A; = cosa and A, = —sin « are constants in IR

This shows that f € F. The coordinates of f in the basis B of F are given by the pair (cos a, — sin a).
Similarly, for the mapping g, we have

g(x) = sin(x + ) = sinx. cos f + cos x. sin f3

= A1 cosx + Aysinx, where A; =sinf and A, = cos f§ are constants in R

This implies that g € F. The coordinates of g in the basis B of F are given by the pair (sin 3, cos f§).
Exercise n’3 :
Solution : To determine a basis of a vector subspace F, we first try to obtain a spanning family
for F and then show that this family is linearly independent. Thus,

F={X=(x,y,z,t)€IR4:y=—2x and —x+3z=t}= (X=(x-2x,z,—x+3z2) : x,z€ R}

={X=x1,-2,0,-1)+2z(0,0,1,3): x,ze R} =(Lr={a=(1,-2,0,-1),b =(0,0,1,3)})
=Span{Lr ={a=(1,-2,0,-1),b=(0,0,1,3)}}

Thus, F is a subspace of R* spanned by the family of vectors Ly = {a = (1,-2,0,-1),b = (0,0, 1, 3)}.
Moreover, it is easy to verify that Ly is linearly independent. Therefore, Ly forms a basis of F, and
it follows that dim(F) = Card(Lg) = 2.



Similarly, for G we find that G is a subspace of R* spanned by the family of vectors
Lg ={c=(-2,1,0,0),d =(=3,0,1,0),v = (-1,0,0, 1)}

Moreover, it is easy to verify that L¢ is linearly independent. Therefore, L; forms a basis of G,
which implies that dim(G) = Card(L¢) = 3.
2. We have

FNG = {X=(r,yzt)eR':XeFandXeG|=
= {X:(x,y,z,t)e]R4:2x+y:O,—x+32—t:O,x+2y+3z+t:O}

Z{X=(X,y,2,f)€1R4:x: gz,y:—?,z,t: %z}

(b) Basis of FN G : we have

3 3 3 31,3
FNG= {X = (EZ, -3z, z, Ez) 1z € IR} = span (mec = {m = (E/ -3,1, E)})

Thus, F N G is a subspace of R* generated by the family Lrng = {m = (%, -3,1, %)} . Since m # Ogs,
the set F N G is linearly independent. Therefore, Ly~ forms a basis of F N G and we conclude that
dim(F N G) = Card(Lrng) = 1.

3) According to Grassmann'’s formula, we have

dim(F + G) = dim(F) + dim(G) - dim(FNG) =2 +3 -1 = 4.

Exercise n’4 : Solution
1. (a) Let x € R, then

{ fi(=x) = 1 [f(=x) + f(x)] = fu(x)
fl=x) = L [f(=x) = f(0)] = =1 [f(x) = f(=x)] = = fo(x)

Thus, f; is even and f; is odd.
Now, let’s prove that
EV(R,R)+OD(R,R) =F (R, R).

j) Since EV (R, R) + OD (R, R) is a subspace of ¥ (R, R), we have
EV(R,R)+OD(R,R) c ¥ (R, R).
(j) On the other hand, let f € ¥ (R, R), then
fEEVIRR)+OD(R,R)cF (R,R) & J9; e EV(IR,R),I5 € I(R,R): f=g1 + 1>

& dg1 e EV(R,R),dg, € (R, R),Vx € R: f(x) = g1(x) + ga(x).
Forany f € ¥ (R, R) and any x € R, we can write

F3) = 3P+ ) = 3(F@+ 0= F0+ @) = S0+ F0)+5(FW-F0) = 91 +20)

where , ,
P1(x) = E(f(x) + f(=x)) = fi(x), p2(x) = i(f(x) - f(=x)) = fo(%).
Since f; € EV(R,R), f, € OD (R, R), we conclude that

91 = i€ EV(RR), 9= /o€ OD(RR): f=g1+ 9>



— f € EV(R,R) + OD (R, R)

Thus
F(R,R)cEV(R,R)+OD(R,R).

Since we have both inclusions, we conclude
EV(R,R)+ OD(R,R) =¥ (R,R).

(b) We know that the subspaces EV (IR, R) and OD (IR, R) are complementary in ¥ (R, R) if and
only if their direct sum equals ¥ (R, R). That is,

F(R,R) = EV(R,R)®OD (R, R)

NEV (R,R) N OD (R, R) = {Or®r R}
iNF (R,R) = EV(R,R) + OD (R, R).
(j) Since EV (R, R) N OD (IR, R) is a subspace of ¥ (IR, R), so the zero mapping O# r) belongs to
both EV (R, R) and OD (IR, R), it follows that
{0rmp)} € EV(R,R) N OD (R R).
Now, let f € ¥ (R, R), then

fEeEV(RR)
feEV(R,R)NOD (R R) = and
feOD(R,R)

and ,Vx e R.
f(x) =—f(=x)
= 2f(x) =0,Vx e R
= f(x)=0,YxeR

{ f(x) = f(=x)
-

= f = 0r®rR) € {0r®R)}
— EV(R,R) N OD (R, R) {0y wp)] -

Since we have both inclusions, we conclude
EV(R,R) N OD (R, R) = {O®rr)} -
(jj) Since from part (a), we have ¥ (R, R) = EV (R, R) + OD (R, R), it follows that

F (R,R) = EV (R, R) ® OD (R, R)



