Page d'accueil
Semester: 01
Teaching Unit: Fundamental
Subject: Algebra 1
Credits: 5
Coefficient: 3
Teaching Objectives:
The aim of this course is to introduce the basic concepts of algebra and set theory.
Recommended Prerequisites:
Knowledge of classical algebra.
Course Coordinator: Kecies Mohamed
Email: m.kecies@centre-univ-mila.dz
This course is part of the Algebra 1 module for first-year Computer Science students.
Subject: Algebra 1
COURSE SYLLABUS: Algebra I
Chapter 1: Logical Concepts
- Truth tables
 - Quantifiers
 - Types of reasoning
 
Chapter 2: Sets and Functions
- Definitions and examples
 - Functions: injection, surjection, bijection, direct image, inverse image, restriction, and extension
 
Chapter 3: Binary Relations on a Set
- Basic definitions: reflexive, symmetric, antisymmetric, and transitive relations
 - Order relation: definition, total order, and partial order
 - Equivalence relation: equivalence classes
 
Chapter 4: Algebraic Structures
- Internal composition law: stable subsets and properties
 - Groups: definitions, subgroups, examples, group homomorphisms, and isomorphisms; examples of finite groups Z/nZ (n=1,2,3,…) and the permutation group S_3.
 - Rings: definition, subrings, computation rules, invertible elements, zero divisors, ring homomorphisms, and ideals
 - Fields: definitions, finite fields( Z/pZ where p is prime), IR, and IC.
 
Chapter 5: Polynomial Rings
- Polynomials and their degree
 - Construction of the polynomial ring
 - Arithmetic of polynomials: divisibility, Euclidean division, GCD, and LCM of two polynomials; relatively prime polynomials and factorization into irreducibles
 - Roots of a polynomial: roots and degree, root multiplicity
 
Assessment Method:
The evaluation consists of Continuous Assessment and a Final Exam.
| 
   
  | 
  
   Pondération  | 
 
| 
   Final Exam  | 
  
   60%  | 
 
| 
   Continuous Assessment  | 
  
   40%  | 
 
| 
   Attendance and participation  | 
  
   8=3+3+2  | 
 
| 
   Quizzes (number):  | 
  
   12 (1)  | 
 
| 
   Practical Work (number):  | 
  
   /  | 
 
| 
   Presentations:  | 
  
   /  | 
 
| 
   Reports:  | 
  
   /  | 
 
| 
   Internship reports:  | 
  
   /  | 
 
| 
   Field trip reports:  | 
  
   /  | 
 
| 
   Other 1/ ……………………………………………….  | 
  
   /  | 
 
| 
   Other 2: ……………………………………………….  | 
  
   /  | 
 
| 
   Other 3 : ……………………………………………….  | 
  
   /  | 
 
| 
   Total  | 
  
   20  | 
 
| 
   Total  | 
  
   1 (100%)  | 
 
Bibliographic References: Books, Handouts, Websites, etc.
1- Algèbre exercices et problèmes, licence 510/538
2- Algèbre pour la licence3; groupes, anneaux, corps 510/318
3- Théorie des groupes, rappels de cours, exercices et problème corrigés 510/533
4- Cours d'algèbre et exercices corrigés 510/700
5- Ensembles, relation, Applications, Dénombrement – exercices corrigés avec rappel de cours L1 510/523
6- Algèbre 1ere année, cours et exercices avec solutions 510/83
7- Algèbre 1ère année, exercices corrigés 510/85
8- Mathématiques L1, cours complets avec 1000 tests et exercices corrigés 510/468
