Topic outline

  • Contact Form


    https://st2.depositphotos.com/1005920/6400/i/450/depositphotos_64001109-stock-photo-email-flat-icon-contact-sign.jpg
    Institute : Science and Technology

    Department: Common  Core Department of Science and Technology

    Target public: First Year Common Core of Science and Technology (LMD).

    Fields of Specialization: Mathematics

    Course title: Analysis 2

    Credit: 6

    Coefficient: 3

    Duration: 15 weeks

    Weekly timetable: 1h 30 min of course and 3 hours for tutorial group

    Place of teaching: Lecture hall 

    Teacher: Hocine RANDJI

                     Randji.Hocine@yahoo.com

    Evaluation methods: A final exam , short tests.

    • Recommended prerequisite knowledge:

      

      Basic high mathematics concepts. 

      • Chapter 01: Properties of the set of real numbers R

        https://empoweryourknowledgeandhappytrivia.files.wordpress.com/2016/09/real-numbers.jpg


        The main topics in this chapter are:

        • Upper bound, lower bound, bounded set.
        • Maximum element, minimum element.
        • Supremum (least upper bound), infimum (greatest lower bound).
        • Absolute value, integer part (floor function).

      • References:

                                                                                                                                    :بالعربية 

        .بابا حامد، بن حبيب، التحيل  1  تذكير بالدروس و تمارين محلولة عدد  300  ترجمة الحفيظ مقران، ديوان المطبوعات الجامعي *

           

        In English

        • Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968).
        • Terence Tao, Analysis 1 (3rd edition), Springer (2016).
        • Glyn James,  Modern Engineering Mathematics, Pearson (2020).
        • Bill Cox, Understanding Engineering Mathematics,  Newnes, (2001).

        En français:

        • BOUHARIS  Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés  d’Analyse 1,   Première année Licence MI Mathématiques et Informatique, U.S.T.O, 2020-2021. 
        • Benzine BENZINE, Analyse réelle cours et exercices corriges, première année maths et informatique (2016),
        • N. Piskounov, Calcul differentiel et integral T1 (8ème édition), 2 édition mir. Moscou