Page d'accueil

Semester: 01
Teaching Unit: Fundamental
Subject: Algebra 1
Credits: 5
Coefficient: 3

Teaching Objectives:

The aim of this course is to introduce the basic concepts of algebra and set theory.

Recommended Prerequisites:

Knowledge of classical algebra.

Course Coordinator: Kecies Mohamed
Email: m.kecies@centre-univ-mila.dz

This course is part of the Algebra 1 module for first-year Computer Science students.

Subject: Algebra 1

COURSE SYLLABUS: Algebra I

Chapter 1: Logical Concepts

  • Truth tables
  • Quantifiers
  • Types of reasoning

Chapter 2: Sets and Functions

  • Definitions and examples
  • Functions: injection, surjection, bijection, direct image, inverse image, restriction, and extension

Chapter 3: Binary Relations on a Set

  • Basic definitions: reflexive, symmetric, antisymmetric, and transitive relations
  • Order relation: definition, total order, and partial order
  • Equivalence relation: equivalence classes

Chapter 4: Algebraic Structures

  • Internal composition law: stable subsets and properties
  • Groups: definitions, subgroups, examples, group homomorphisms, and isomorphisms; examples of finite groups Z/nZ (n=1,2,3,…) and the permutation group S_3​.
  • Rings: definition, subrings, computation rules, invertible elements, zero divisors, ring homomorphisms, and ideals
  • Fields: definitions, finite fields( Z/pZ where p is prime), IR, and IC.

Chapter 5: Polynomial Rings

  • Polynomials and their degree
  • Construction of the polynomial ring
  • Arithmetic of polynomials: divisibility, Euclidean division, GCD, and LCM of two polynomials; relatively prime polynomials and factorization into irreducibles
  • Roots of a polynomial: roots and degree, root multiplicity

Assessment Method:

The evaluation consists of Continuous Assessment and a Final Exam.

 

Pondération

Final Exam

60%

Continuous Assessment

40%

Attendance and participation

8=3+3+2

Quizzes (number):

12 (1)

Practical Work (number):

/

Presentations:

/

Reports:

/

Internship reports:

/

Field trip reports:

/

Other 1/ ……………………………………………….

/

Other 2: ……………………………………………….

/

Other 3 : ……………………………………………….

/

Total

20

Total

1  (100%)

 

Bibliographic References: Books, Handouts, Websites, etc.

1-       Algèbre exercices et problèmes, licence  510/538

2-       Algèbre pour la licence3; groupes, anneaux, corps 510/318

3-       Théorie des groupes, rappels de cours, exercices et problème corrigés 510/533

4-       Cours d'algèbre et exercices corrigés  510/700

5-       Ensembles, relation, Applications, Dénombrement – exercices corrigés avec rappel de cours L1            510/523 

6-       Algèbre 1ere année, cours et exercices  avec solutions  510/83

7-       Algèbre 1ère année, exercices corrigés  510/85

8-       Mathématiques L1, cours complets avec 1000 tests et exercices corrigés 510/468  

 

 

 

 


Modifié le: samedi 30 novembre 2024, 20:11