Practical work N°3:

DETERMINATION OF THE ALKALINITY OF AN AQUEOUS SOLUTION USING A HYDROCHLORIC ACID SOLUTION. pH-METRIC MONITORING AND GRAN'S METHOD.

OBJECTIVE:

To determine the alkalinity of an aqueous solution by pH-metric titration with data analysis using the Gran method. This PW will teach you titration techniques, using a pH meter and data analysis to calculate alkalinity precisely.

EQUIPMENT USED:

- pH- meter
- Graduated burette
- Beaker and magnetic stirrer
- Aqueous solution of bicarbonate (NaHCO₃)
- Hydrochloric acid solution (HCl) of known concentration (0.1M)
- Graph paper for drawing the Gran curve

EXPERIMENTAL PROTOCOL:

1. Preparation of the sample:

- -Place an accurate volume (50 mL) of the solution to be titrated in a beaker.
- -Set up the magnetic stirrer and start stirring to ensure homogeneity.

2. Prepare the measuring equipment:

-Calibrate the pH- meter before starting the experiment to obtain accurate measurements.

3. pH-metric titration:

-Fill the burette with the HCl solution and start adding small amounts (e.g. 0.5 mL at a time).

-At each addition of HCl solution, measure the $pH\ of\ the\ solution$ obtained
and record in the table below:

V HCL add	pH mesured	$G = V_{HCl} * 10^{-pH}$
0		
0.5		
1		
1.5		
2		

-Continue the additions until you reach a pH well below the equivalence point (approximately pH = 4).

QUESTIONS

- -Give a definition of Gran's method.
- -Name some of the chemical materials you used in this practical work.

-Application of Gran's method:

- -For each measurement, calculate the Gran factor, $G = V_{HCI} \times 10^{-pH}$, where V_{HCI} is the volume of HCl poured in up to the point of measurement.
- -Draw the curve for $G = f(V_{HCI})$ poured in)
- -Extrapolate the straight line obtained to determine the volume of HCl needed to reach equivalence.

- Calculating alkalinity:

Use the volume of hydrochloric acid at equivalence to calculate the alkalinity. Alkalinity (in mol/L) can be calculated using the corresponding equation, taking into account the initial volume of solution and the concentration of HCl.

ALCALINITY =
$$[HCl] \times Veq / V_{(NaHCO3)}$$

Where:

- [HCl] = 0.1 mol/L (concentration of HCl),
- Veq = volume of HCl found by extrapolation,
- $V_{\text{(NaHCO3)}}$ = initial volume of solution (50 mL).

- CONCLUSION.