Democratic and Popular Republic of Algeria University Center: Abdelhafid Boussouf. Mila

Institute of Mathematics and Computer Sciences

2025-2026

L3 Mathematics, S5.

Department of Mathematics Dr.Rakia Ahmed-Yahia

Email:r.ahmedyahia@center-univ-mila.dz

Normed Vector Spaces Exercises of chapter 1:Banach spaces

Exercise1 Let E be a normed vector space, and x, y, z, t four vectors of E. Show that, $||x-t|| + ||y-z|| \le ||x-y|| + ||y-t|| + ||t-z|| + ||z-x||$

Exercise 2 Let be $X = [0, \infty[$. For $x, y \in X$, note

$$\delta(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|$$

Show that δ is a distance on X. Is the metric space (X, d) complet?

Exercise 3 Let be E a normed vector space and $(x_n)_{n\in\mathbb{N}}$ a sequence of elements of E. Supose that (x_n) is a Cauchy sequence. Show that it converges if and only if it has a convergent subsequence.

Exercise4 Let bet E the vectorial space of \mathbb{R} valued continuous functions on [-1,1]. Define a norm on E by

$$||f||_1 = \int_{-1}^{1} |f(t)| dt$$

We want to show that E endowed with this norm is not complet. To show that we define a sequence of functions $(f_n)_{n\in\mathbb{N}^*}$ by

$$f_n(t) = \begin{cases} -1 & \text{if } -1 \le t \le -\frac{1}{n} \\ nt & \text{if } -\frac{1}{n} \le t \le \frac{1}{n} \\ 1 & \text{if } \frac{1}{n} \le t \le 1 \end{cases}$$

- 1. verify that $f_n \in E, \forall n \geq 1$.
- 2. Show that

$$||f_n - f_p|| \le \sup\left(\frac{2}{n}, \frac{2}{p}\right)$$

and deduce that $(f_n)_{n\in\mathbb{N}^*}$ is a Cauchy sequence.

3. Supose that there exists a function $f \in E$ so that (f_n) converges to f in $(E, |||_1)$. Then show that we have:

$$\lim_{n \to +\infty} \int_{-1}^{-\alpha} |f_n(t) - f(t)| dt = 0 \quad \text{and} \quad \lim_{n \to +\infty} \int_{\alpha}^{1} |f_n(t) - f(t)| dt = 0$$

for all $0 < \alpha < 1$.

4. Therefore show that

$$\lim_{n \to +\infty} \int_{-1}^{-\alpha} \left| f_n\left(t\right) + 1 \right| dt = 0 \qquad \text{and} \qquad \lim_{n \to +\infty} \int_{\alpha}^{1} \left| f_n\left(t\right) - 1 \right| dt = 0$$

for all $0 < \alpha < 1$. Deduce that

$$f(t) = 1 \text{ for all } -1 \le t < 0$$

 $f(t) = -1 \text{ for all } 0 < t \le 1$

5. Conclude.

Exercise 5 Let be E the vectorial space of $\mathbb C$ valued continuous functions on [-1,1], endowed with the norm $\sup: \|f\|_{\infty} = \sup_{t \in [-1,1]} |f(t)|$ Let be E the vectorial space of 2π -périodique continuous functions on $\mathbb R$, endowed with the norms N_2 so that

Let be F the vectorial space of 2π -périodique continuous functions on \mathbb{R} , endowed with the norms N_2 so that $N_2\left(f\right) = \frac{1}{2\pi} \sqrt{\int_{-\pi}^{\pi} \left|f\left(t\right)\right|^2 dt}$, or the norm $\sup N_{\infty}: N_{\infty}\left(f\right) = \sup_{t \in \mathbb{R}} f\left(t\right)$.

Let be $L: E \to F$ the mapping defined by $L(f)(t) = f(\cos t)$.

- 1- Show that L is well defined, is lineare and injective.
- 2- Show that L is continuous for both of the norms N_2 and N_∞ of F, and calculate for both of them, $\|L\|_2$ and $\|L\|_\infty$.

Exercise 6 Let X be a Banach space, Y a normed vectorial space and $T: X \to Y$ a continuous lineare mapping. Supose that there exists a constante c > 0 so that:

$$||Tx|| \ge c ||x||$$
 for all $x \in X$.

- 1. Show that Im(T) is closed in Y.
- 2. Show that T is an isomorphism from X to Im(T).