Abdelhafid Boussouf University Center, Mila Institute of Mathematics and Computer Science First year of Computer Science License 2025/2026

Algebra I, Worksheet 2

<u>Exercise n°1</u>: Let the set $A = \{1, 2, 3\}$. Determine whether the following assertions are True or False.

$$3 \in A$$
, $3 \subset A$, $\phi \in A$, $\{\{1,2\},3\} = A$, $\{1,2\} \subset A$, $A \cup \{\phi\} = A$

Exercise $n^{\circ}2$: Let *A* and *B* be two sets.

- 1. Prove the following properties of power sets:
- (a). if $A \subset B$, then $\mathcal{P}(A) \subset \mathcal{P}(B)$.
- (b). $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- (c). $\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$.
- 2. Give an example of two sets *A* and *B* such that $\mathcal{P}(A \cup B) \not\subset \mathcal{P}(A) \cup \mathcal{P}(B)$.

Exercise $n^{\circ}3$: Let A, B, C be subsets of a set E. Prove

$$1.A \subset B \Longrightarrow C_E^B \subset C_E^A \qquad \qquad 2. \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

3.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
 4. $A \triangle B = (A \cup B) \setminus (A \cap B)$

Then determine $A \triangle A$, $A \triangle \phi$, $A \triangle E$.

Exercise $n^{\circ}4$: Determine whether each of the following relations \Re is reflexive, symmetric, antisymmetric, or transitive.

- 1. $\forall x, y \in \mathbb{R} : x \mathfrak{R}_1 y \iff \cos^2 x + \sin^2 y = 1$.
- 2. $\forall x, y \in \mathbb{R} : x \mathfrak{R}_2 y \iff |x| = |y|$.

Exercise $n^{\circ}5$: Let \Re be the binary relation on \mathbb{Z} defined by

$$\forall x, y \in \mathbb{Z} : x\Re y \iff \exists k \in \mathbb{Z} : x + 2y = 3k.$$

- 1. Prove that \Re is an equivalence relation on the set \mathbb{Z} .
- 2. For $x \in \mathbb{Z}$, determine the equivalence class of x, denoted by \dot{x} .
- 3. Determine the quotient set \mathbb{Z}/\mathfrak{R} .

Exercise n $^{\circ}$ 6 : We define a relation \Re on \mathbb{N}^* as follows

$$\forall x, y \in \mathbb{N}^* : x \Re y \iff \exists n \in \mathbb{N}^* : y = x^n.$$

This relation can also be expressed as "y is a non-zero integer power of x".

- 1. Prove that \Re is a partial order relation on \mathbb{N}^* .
- 2. Let $A = \{2, 4, 16\}$ be a subset of \mathbb{N}^* . Examine the existence of a greatest element and a least element in A (denoted $\max(A)$ and $\min(A)$) with respect to the relation \Re .

Exercise $n^{\circ}7$: (Supplementary Exercise). Let E be a set, and let $A \subset E$. Define a binary relation \Re on $\mathcal{P}(E)$ (the power set of E) by

$$\forall X, Y \in \mathcal{P}(E) : X \Re Y \iff X \cap A = Y \cap A.$$

- 1. Prove that \Re is an equivalence relation on $\mathcal{P}(E)$.
- 2. For a subset X of E denote by \dot{X} the equivalence class of X under \mathfrak{X} . Describe \dot{X} explicitly, and determine the equivalence classes of the sets ϕ , A, E, and C_E^A .

Exercise $n^{\circ}8$: (Supplementary Exercise). In \mathbb{R}^2 , consider the binary relation \mathfrak{R} defined by

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 : (x_1, y_1) \Re(x_2, y_2) \iff x_1 \le x_2 \text{ and } y_1 \le y_2.$$

- 1. Prove that \Re is an order relation. Is this order total?
- 2. Let $A = \{(1,2), (3,1)\} \subset \mathbb{R}^2$. Determine the set of lower bounds $\mathcal{LB}(A, E)$, the set of upper bounds $\mathcal{UB}(A, E)$, as well as the infimum $\inf(A)$ and supremum $\sup(A)$ of A.