Université Abdelhafid Boussouf, Mila Institut de Mathématiques et Informatiques Première année Master Mathématiques Appliquées et fondamentals 2025/2026

Matière: Equations aux différences

Responsable: Y. Halim

Série de TD N° 1

Exercice 1: (Bac 2024)

On considère la suite numérique (u_n) définie sur l'ensemble des entiers naturels $\mathbb N$ par :

$$\begin{cases} u_0 = 1, \\ u_{n+1} = 3u_n - 2. \end{cases}$$

- 1. Calculer les trois premiers termes : u_1 , u_2 et u_3 .
- 2. On définit la suite (v_n) par :

$$v_n = u_n - 1$$
.

- (a) Montrer que (v_n) est une suite géométrique.
- (b) Écrire l'expression de v_n en fonction de n, puis en déduire celle de u_n .

Exercice 2:

Donner la forme générale de la solution de l'équation aux différences suivant

$$x_{n+1} = a(n)x_n, \quad x_{n_0} = x_0, \quad n \ge n_0 \ge 0,$$
 (1)

où $a(n) \neq 0$, et a(n) est un fonction réel définie sur \mathbb{N}_0 .

Application: Trouvez les solutions des équations aux différences suivants:

(a)
$$x_{n+1} - 3^n x_n = 0$$
, $x_0 = c$.

(b)
$$x_{n+1} - \frac{n}{n+1}x_n = 0$$
, $n \ge 1$, $x_1 = c$.

Exercice 3:

Donner la forme générale de la solution de l'équation aux différences suivant

$$y_{n+1} = a(n)y_n + g(n), \quad y_{n_0} = y_0, \quad n \ge n_0 \ge 0,$$
 (2)

où $a(n) \neq 0$, et a(n) et g(n) sont deux fonctions réels définies sur \mathbb{N}_0 .

Application: Trouvez les solutions des équations aux différences suivants:

(c)
$$x_{n+1} = 2x_n + 3^n$$
, $x(1) = 0.5$.

(b)
$$x_{n+1} = (n+1)x_n + 2^n(n+1)!, \quad x(0) = 1.$$

Exercice 4: (Interrogation 2024)

Soit $\{L_n\}_{n\geq 0}$ la suite de Lucas définie par

$$L_{n+2} = L_{n+1} + L_n$$
, $L_0 = 2, L_1 = 1$.

- 1. Donner la forme des solutions (Formule de Benet) de la suite de Lucas. (on note les racines par α et β , avec $\alpha > \beta$).
- 2. Calculer $\lim_{n\to+\infty} \frac{L_{n+r}}{L_n}$, avec $r \in \mathbb{N}$.
- 3. Montrer que

$$L_n^2 - L_{n-1}L_{n+1} = 5(-1)^n, \quad \forall n \ge 1.$$
 (3)

Exercice 5: (Interrogation 2022)

Résoudre les équations aux différences suivantes

$$x_{n+1} - \frac{n}{n+1}x_n = \frac{1}{n}, \quad x_1 = 2.$$
 (4)

$$x_{n+2} - 6x_{n+1} + 9x_n = e^{n\log(3)}n^3 + 3^n n. (5)$$