

1	Équations aux différences linéaires	. 5
1.1	Définitions et résultats généraux	5
1.2	Les équations aux différences linéaires à coefficients constants	15
1.2.1	Résolution de l'équation homogène	15
1.2.2	Résolution de l'équation non homogène	21
1.2.3	Analyse de la stabilité des solutions	23
2	Equations aux différences non linéaires	27
2.1	Définitions de Stabilité	27
2.1.1	Stabilité des équations aux différences non linéaires	29
2.1.2	Stabilité par linéarisation	31
2.2	Théorèmes de convergences	34
3	Systèmes d'équations aux différences non linéaires	37
3.1	Définitions de Stabilité	37
3.1.1	Stabilité des systèmes d'équations aux différences non linéaires	39
3.1.2	Stabilité par linéarisation	

Définitions et résultats généraux

Définition 1.1.1 Une équation de la forme

$$x_{n+k} + p_1(n)x_{n+k-1} + \dots + p_k(n)x_n = g(n)$$
(1.1)

avec, $p_0(n) = 1, p_1(n), p_2(n), \dots, g(n)$ sont des fonctions définies sur \mathbb{N}_{n_0} , s'appelle équation aux différences linéaire d'ordre k dés que $p_k(n) \neq 0$.

En générale on associe k conditions initiales avec l'équation (1.1)

$$x_{n_0} = c_1, x_{n_0+1} = c_2, \dots, x_{n_0+k-1} = c_k,$$
 (1.2)

avec c_i , i = 1, ..., k sont des constantes réelles ou complexes.

- On a les notations suivants

 - $\mathbb{N} = \{1, 2, 3, ...\}.$ $\mathbb{N}_0 = \{0\} \cup \mathbb{N}.$ $\mathbb{N}_{n_0} = \{n \ge n_0, n \text{ entier}\}.$

۸

Définition 1.1.2 L'équation aux différences (1.1) avec g(n) = 0, $\forall n \ge n_0$ est dite équation aux différences linéaire *homogène* et elle s'écrit comme suit

$$x_{n+k} + p_1(n)x_{n+k-1} + \dots + p_k(n)x_n = 0. (1.3)$$

Définition 1.1.3 Une suite $\{x_n\}_{n\geq n_0}$ est dite *solution* de l'équation (1.1) avec les conditions initiales (1.2) si elle satisfait la relation (1.1).

Théorème 1.1.1 L'équation (1.1) avec les conditions initiales (1.2) admet une et une seul solution.

3	Chapter 1. Équations aux différences linéaires
Théorème 1.1.2 L'ensemmble S des so vectoriel sur \mathbb{K} de dimension k .	lutions de l'équation aux différences (1.3) est un espace

Définition 1.1.4 Le *Casoratien* W(n) des solutions $(x_n^1)_{n>n_0}, (x_n^2)_{n>n_0}, \dots, (x_n^k)_{n>n_0}$ de l'équation aux différences (1.3) est donné par

$$W(n) = det \begin{pmatrix} x_n^1 & x_n^2 & \dots & x_n^k \\ x_{n+1}^1 & x_{n+1}^2 & \dots & x_{n+1}^k \\ \vdots & \vdots & \ddots & \vdots \\ x_{n+k-1}^1 & x_{n+k-1}^2 & \dots & x_{n+k-1}^k \end{pmatrix}.$$

Définition 1.1.5 Les fonctions $f_1(n), f_2(n), \dots, f_k(n)$ sont linéaires dépendants pour $n \ge n_0$ si existe des constants a_1, a_2, \dots, a_k non nuls tels que

$$a_1 f_1(n) + a_2 f_2(n) + \ldots + a_k f_k(n) = 0, \quad n \ge n_0.$$

On dit que la famille des fonctions $\{f_i(n)\}_{i=1}^k$, sont linéairement indépendantes si pour tout

$$\sum_{i=1}^k lpha_i f_i(n) = 0 \Rightarrow lpha_i = 0, i = 1, 2, \ldots, k, \quad lpha_i \in \mathbb{R}.$$

Lemme 1.1.3 (Lemme d'Abel) Soient $(x_n^1)_{n\geq n_0}, (x_n^2)_{n\geq n_0}, \dots, (x_n^k)_{n\geq n_0}$ sont des solutions de l'équation homogène (1.3), et soit W(n) leur Casoratien alors, pour tout $n \ge n_0$

$$W(n) = (-1)^{k(n-n_0)} \left(\prod_{i=n_0}^{n-1} p_k(i) \right) W(n_0).$$
(1.4)

Proof.

1.1	Définitions	et	résultats	généraux
-----	-------------	----	-----------	----------

11

Corollaire 1.1.4

Supposons que $p_k(n) \neq 0, \forall n \geq n_0$. Alors le Casoratien $W(n) \neq 0$ pour chaque $n \geq n_0$ si et seulement si $W(n_0) \neq 0$.

Proof. Il découle directement de la formule (1.4).

Proposition 1.1.5

Soit $B = \{(x_n^1)_{n \geq n_0}, (x_n^2)_{n \geq n_0}, \dots, (x_n^k)_{n \geq n_0}\}$ une ensemble des solutions de l'équation aux différences (1.3), alors B est libre si et seulment si $W(n) \neq 0, \forall n \geq n_0$.

Proof.

12	Chapter 1. Équations aux différences linéaires

Définition 1.1.6

Un ensemble de k solutions libres de l'équation aux différences (1.3) dit *ensemble fondamentale* des solutions.

■ Example 1.1

Le théorème suvant montre que l'équation aux différences linéaire homogène (1.3) admet

toujours un ensemble fondamentale des solutions (c'est-à-dire une base des solutions).

Théorème 1.1.6 (Théorème fondamental)

Si $p_k(n) \neq 0, \forall n \geq n_0$, l'équation aux différences linéaire homogène (1.3) admet un ensemble fondamentale de solutions.

Proof.

Proposition 1.1.7 Si $x_n^1, x_n^2, \dots, x_n^k$ sont des solutions de l'équation (1.3). Alors

$$x_n = a_1 x_n^1 + a_2 x_n^2 + \ldots + a_k x_n^k$$

est aussi est un solution de l'équation (1.3), avec a_i sont des constants arbitraires.

Proof.

Corollaire 1.1.8 Soit $\{(x_n^1)_{n\geq n_0}, (x_n^2)_{n\geq n_0}, \dots, (x_n^k)_{n\geq n_0}\}$ un ensemble fondamentale de solutions de l'équation (1.3). Alors la solution génélale de (1.3) est donné par

$$x_n = \sum_{i=1}^k a_i x_n^i$$

avec a_i sont des constants arbitraires.

Lemme 1.1.9 Soient $(x_n)_{n\geq n_0}$, $(y_n)_{n\geq n_0}$ deux solutions de l'équation (1.1), alors $(z_n)_{n\geq n_0} = (x_n - y_n)_{n\geq n_0}$ est une solution de l'équation (1.3).

Proof.

Théorème 1.1.10 Soient $\{(x_n^1)_{n\geq n_0}, (x_n^2)_{n\geq n_0}, \dots, (x_n^k)_{n\geq n_0}\}$ un ensemble fondamental de solutions de l'équation (1.3) et $(x_n^p)_{n\geq n_0}$ une solution particulière de l'équation (1.1), alors toute solutions générale de l'équation (1.1) prend la forme

$$x_n = \sum_{i=1}^k a_i x_n^i + x_n^p, \quad n \ge n_0.$$

Proof.

Dr. Y Halim

1.2 Les équations aux différences linéaires à coefficients constants

Dans toute la suite, on s'intéresse aux équations aux différences à coefficients constants homogènes, c'est-à-dire

$$x_{n+k} + p_1 x_{n+k-1} + p_2 x_{n+k-2} + \dots + p_k x_n = 0.$$
(1.5)

Les p_i sont des constantes réels ou complexes.

1.2.1 Résolution de l'équation homogène

Notre but et trouver un ensemble fondamentale de solutions et, par conséquent la solution générale de l'équation (1.5).

Théorème 1.2.1 L'équation (1.5) a des solutions de la forme

$$x(n) = \lambda^n$$

avec $\lambda \in \mathbb{C}^*$ et vérifie

$$P(\lambda) = \sum_{i=0}^{k} p_i \lambda^{k-i} = 0.$$
(1.6)

Proof.

Définition 1.2.1 Le polynôme

$$P(\lambda) = \sum_{i=0}^{k} p_i \lambda^{k-i}$$

s'appelle le *polynôme caractéristique* associé à l'équation (1.5).

■ Example 1.2

Théorème 1.2.2

Si les racines $\lambda_1, \lambda_2, \dots, \lambda_k$ du polynôme caractéristique $P(\lambda)$ sont distinctes, alors $\{\lambda_1^n, \lambda_2^n, \dots, \lambda_k^n\}$ est un ensemble fondamental des solutions pour l'équation (1.5).

Proof.

$$\left| egin{array}{ccccc} 1 & 1 & \cdots & 1 \ \lambda_1 & \lambda_2 & \cdots & \lambda_k \ dots & dots & \ddots & dots \ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_k^{k-1} \end{array}
ight| = \prod_{i>ji,j=1,\ldots,k} (\lambda_i - \lambda_j)$$

est appelé le déterminant de Vandermonde gènèralisè.

Corollaire 1.2.3 Du théorème précédent, il résulte que toute solution de l'équation (1.5) s'écrit comme combinaison linéaire de λ_i^n , i = 1, ..., k, i.e,

$$x(n) = \sum_{i=1}^{k} c_i \lambda_i^n, c_i \in \mathbb{R}$$

avec $\lambda_1, \dots, \lambda_k$ sont des racines distinctes du polynôme caractéristique $P(\lambda)$.

Théorème 1.2.4 Supposons que $\lambda_1, \lambda_2, \dots, \lambda_r$, r < k sont les racines du polynôme caractéristique associé à l'équation (1.5) avec les multiplicitée m_1, m_2, \dots, m_r respectivement ($\sum_{i=1}^r m_i = k$). alors

$$\left\{ (\lambda_1^n)_{n \geq n_0}, (n\lambda_1^n)_{n \geq n_0}, \dots, (n^{m_1-1}\lambda_1^n)_{n \geq n_0}, (\lambda_2^n)_{n \geq n_0}, (n\lambda_2^n)_{n \geq n_0}, \dots, (n^{m_2-1}\lambda_2^n)_{n \geq n_0}, \dots \right\}$$

$$(\lambda_r^n)_{n\geq n_0}, (n\lambda_r^n)_{n\geq n_0}, \ldots, (n^{m_r-1}\lambda_r^n)_{n\geq n_0},$$

est un ensemmble fondamental pour l'équation (1.5).

Corollaire 1.2.5 La solution générale de l'équation (1.5)s'écrit :

$$y(n) = \sum_{i=1}^{s} \sum_{j=0}^{m_i-1} c_{i,j} n^j \lambda_i^n, c_{i,j} \in \mathbb{R}$$

οù

- Le paramètre $s \le k$ désigne le nombre de racines distinctes de l'équation caractéristique (1.6).
- Le paramètre λ_i désigne une racine de l'équation caractéristique (1.6).
- Le paramètre m_i désigne la multiplicité de la racine λ_i .
- Les coefficients $c_{i,j}$ sont des constantes qui sont déterminées à partir des conditions initiales.

■ Example 1.3 (Racines réelles simples)

18	Chapter 1. Équations aux différences linéaires
Evenenie 1 4 (Docince násilce myltim	Jack
■ Example 1.4 (Racines réelles multip	oies)

■ Example 1.5 (Racines complexes conjuguées)

■ Example 1.6 (Suite de Fibonacci)

En 1202, Fibonacci s'intéresse au problème de croissance d'une population de lapins dans des circonstances idéales. Le problème est le suivant:

- On commence avec un nouveau né couple de lapins,
- Un lapin âgé d'un mois est capable de se reproduire,
- Un couple de lapins (en âge de se reproduire) donne naissance à un autre couple de lapins tous les mois,
- Les lapins ne meurent pas.

Fibonacci se posa la question suivante : combien y aura-t-il de couples de lapins après une année ? La figure (1.1) illustre l'évolution du nombre de couples de lapins au fur et à mesure des mois.

On remarque que la suite formée par les nombres de couples aprés chaque mois est la suivante :

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots$$

Cette suite de nombres est appelée suite de Fibonacci.

Définition 1.2.2 La suite de Fibonacci est la suite $\{F_n\}_{n\geq 0}$ telle que $F_0=0, F_1=1$ et

$$F_{n+2} = F_{n+1} + F_n, (1.7)$$

pour tout $n \ge 0$.

- Les termes de cette suite sont appelés nombres de Fibonacci.

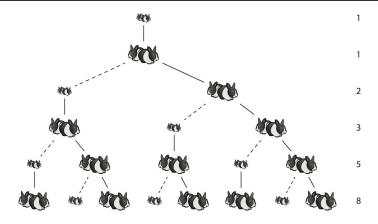


Figure 1.1:

La suite de Fibonacci est une équation aux différences linéaire a coefficients constantes homogène d'ordre 2.

Soit la suite de Fibonacci

$$F_{n+2} - F_{n+1} - F_n = 0$$
, avec $F_0 = 0$ et $F_1 = 1$. (1.8)

Définition 1.2.3 La formule (**??**) est dite La formule de Binet. Autrement dit:

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, n \in \mathbb{N}, \tag{1.9}$$

avec

$$\alpha = \frac{1+\sqrt{5}}{2}, \quad \beta = \frac{1-\sqrt{5}}{2}.$$

$$\alpha = \frac{1+\sqrt{5}}{2}$$
 s'appelle le *nombre d'or*.

1.2.2 Résolution de l'équation non homogène

Soit l'équation aux différences linéares non homogène a coefficients constants

$$x_{n+k} + p_1 x_{n+k-1} + p_2 x_{n+k-2} + \dots + p_k x_n = g(n).$$
(1.10)

Le principe de résolution consiste à éliminer d'abord la fonction g(n), et ensuite résoudre l'équation homogène. Une technique permettant d'éliminer plusieurs types de fonctions g(n), est l'utilisation de l'opérateur d'avancement E.

Opérateur d'avancement

Définition 1.2.4 Étant donnée une suite de nombres entiers f(n), l'opérateur d'avancement E est défini comme suit

$$f(n) = c \text{ (une constante)} \Rightarrow E(f(n)) = c,$$

 $f(n) \neq \text{constante } \Rightarrow E(f(n)) = f(n+1).$

■ Example 1.7

R Il est facile de vérifier que :

1. L'addition et la multiplication d'opérateurs sont commutatives $(E_1 + E_2)f(n) = (E_1 + E_2)f(n)$,

$$(E_1 \times E_2)f(n) = (E_1 \times E_2)f(n).$$

2. L'addition et la multiplication d'opérateurs sont associatives

$$((E_1+E_2)+E_3)f(n) = (E_1+(E_2+E_3))f(n),$$

 $((E_1\times E_2E_3))f(n) = (E_1(E_2\times E_3))f(n).$

■ Example 1.8

■ Example 1.9

Le tableau ci-dessous résume l'expression à employer pour éliminer quelques fonctions g(n) dans les équations non homogènes. Dans le tableau qui suit, $P_k(n)$ et α représentent un polynôme en n de degré k et une valeur entière respectivement.

Fonction $g(n)$	Éliminateur correspondant
g(n) = constante	(E-1)
$g(n) = p_k(n)$	$(E-1)^{k+1}$
$g(n) = \alpha^n$	$(E-\alpha)$
$g(n) = \alpha^n p_k(n)$	$(E-\alpha)^{k+1}$

1.2.3 Analyse de la stabilité des solutions

Définition 1.2.5 On dit que'une solution $(\bar{x}_n)_{n \ge n_0}$ de l'équation (1.5) est **stable**, si pour toute autre solution $(x_n)_{n \ge n_0}$ de la même équation

$$e_n = x_n - \overline{x}_n, \quad n \ge n_0$$

est borné.

Définition 1.2.6 On dit qu'une solution $(\bar{x}_n)_{n\geq n_0}$ de l'équation (1.5) est **asymptotiquement stable**, si $(\bar{x}_n)_{n\geq n_0}$ est stable et pour toute autre solution $(x_n)_{n\geq n_0}$ de la même équation

$$\lim_{n\to+\infty}e_n=\lim_{n\to+\infty}x_n-\overline{x}_n=0.$$

Définition 1.2.7 Une solution $(\bar{x}_n)_{n>n_0}$ de l'équation (1.5) est dite **instable** si elle est non stable.

Théorème 1.2.6

Une solution $(\bar{x}_n)_{n\geq n_0}$ de l'équation (1.5) est asymptotiquement stable si et seule- ment si les racines du npolunôme caractéristique sont à l'intérieur du dusc unité, c'est-à-dir

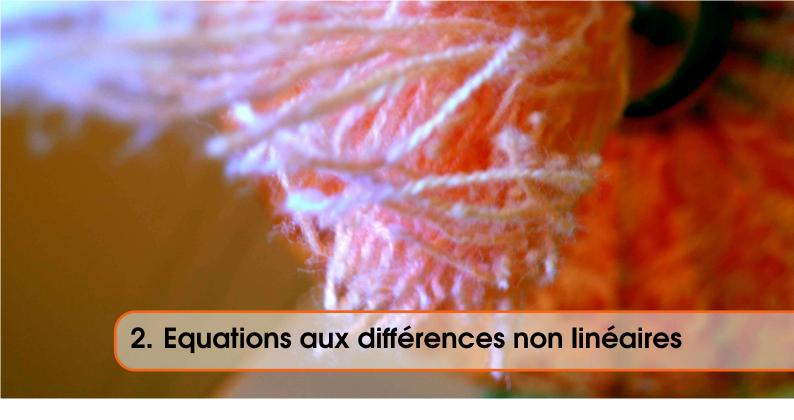
 $(\overline{x}_n)_{n\geq n_0}$ est asymptotiquement stable $\Leftrightarrow |\lambda_i| < 1, i = 1, \dots, s$.

Proof.

Théorème 1.2.7 Une solution $(\bar{x}_n)_{n\geq n_0}$ de l'équation (1.5) est stable si et seulement si les modules des racines du polynôme caractéristique sont inférieures ou égales à 1 avec ceux du module 1 sont des racines simples.

Proof.

■ Example 1.10



2.1 Définitions de Stabilité

Soit *I* un intervalle de \mathbb{R} et soit $f: I^{k+1} \to I$ est une fonction continue.

Définition 2.1.1 Une équation aux différences d'ordre (k+1).

$$x_{n+1} = f(x_n, x_{n-1}, \dots, x_{n-k}), \quad n = 0, 1, \dots,$$
 (2.1)

avec les valeurs initiales. $x_0, x_{-1}, \dots, x_{-k} \in I$, est dite non linéaire s'il n'est pas de la forme (1.1).

■ Example 2.1

•

Définition 2.1.2 Un point $\bar{x} \in I$ est dit point d'équilibre pour l'équation (2.1) si

$$\bar{x} = f(\bar{x}, \bar{x}, \cdots, \bar{x}),$$

autrement dit

$$x_n = \bar{x}, \quad \forall n \ge -k.$$

■ Example 2.2

Définition 2.1.3 Une solution $\{x(n)\}_{n=-k}^{+\infty}$ de l'équation (2.1) est dite *éventuelleement périodique* de période $p \in \mathbb{N}_0$ si

$$\exists N \ge -k; \quad x_{n+p} = x_n.$$

Si N=-k, on dit que la solution est $\emph{p\'eriodique}$ de période p .

■ Example 2.3

Définition 2.1.4 Un intervalle $J \subseteq I$ est dit intervalle invariant pour l'équation (2.1) si

$$x_{-k}, x_{-k+1}, \cdots, x_0 \in J \Rightarrow x_n \in J, \quad n > 0.$$

2.1.1 Stabilité des équations aux différences non linéaires

Définition 2.1.5 Soit \bar{x} un point d'équilibre de l'équation (2.1).

1. \bar{x} est dit *localement stable* si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x_{-k}, \cdots, x_0 \in I : |x_{-k} - \bar{x}| + \cdots + |x_0 - \bar{x}| < \delta$$

alors

$$|x_n - \bar{x}| < \varepsilon, \forall n \ge -k.$$

- 2. \bar{x} est dit localement asymptotiquement stable si
 - • \bar{x} est localement stable,

$$\bullet \exists \gamma > 0, \forall x_{-k}, \cdots, x_0 \in I : |x_{-k} - \bar{x}| + \cdots + |x_0 - \bar{x}| < \gamma \text{ alors}$$

$$\lim_{n\to\infty}x_n=\bar{x}.$$

3. \bar{x} est dit **globalement attractif** si

$$\forall x_{-k}, \cdots, x_0 \in I, \lim_{n \to \infty} x_n = \bar{x}.$$

- 4. \bar{x} est dit globalement asymptotiquement stable si
 - $\bullet \bar{x}$ est localement stable,
 - • \bar{x} est globalement attractif.
- 5. Le point \bar{x} est dit *instable* s'il est non localement stable.

Définition 2.1.6 On appelle équation aux différences linéaire associée à l'équation (2.1) l'équation

$$y_{n+1} = p_0 y_n + p_1 y_{n-1} + \dots + p_k y_{n-k}$$
(2.2)

$$p_i = \frac{\partial f}{\partial u_i}(\bar{x}, \bar{x}, \cdots, \bar{x}), i = 0, \cdots, k.$$

$$f: I^k \longrightarrow I$$

$$(u_1, \dots, u_k) \longmapsto f(u_1, \dots, u_k).$$

$$p(\lambda) = \lambda^{k+1} - p_0 \lambda^k - \dots - p_k.$$

$$p(\lambda) = \lambda^{k+1} - p_0 \lambda^k - \dots - p_k$$

son polynôme caractéristique associé.

■ Example 2.4

Dr. Y Halim

2.1.2 Stabilité par linéarisation

Théorème 2.1.1

- 1. Si toutes les racines du polynôme caractéristique de l'équation aux différences linéaire associée sont dans le disque unité ouvert $|\lambda| < 1$, alors le point d'équilibre \overline{x} de l'équation (2.1) est asymptotiquement stable.
- 2. Si au moins une racine du polynôme caractéristique de l'équation aux différences linéaire associée a un module supérieur à un, alors le point d'équilibre \bar{x} de l'équation (2.1) est instable.

Théorème 2.1.2 — Théorème de Clark . Une condition suffisante pour la stabilité locale asymptotique de l'équation (2.1) et

$$|p_0| + |p_1| + \cdots + |p_k| < 1.$$

Pour montrer cette théorème, on utilisant le Théorème de Rouché.

Théorème 2.1.3 — Théorème de Rouché. Soient f(z), g(z) deux fonctions holomorphes dans un ouvert Ω du plan complexe \mathbb{C} , et soit K un compact contenu dans Ω . Si on a

$$|g(z)| < |f(z)|, \forall z \in \partial K$$

alors le nombre de zéros de f(z) + g(z) dans K est égal au nombre de zéros de f(z) dans K.

Proof. (Théorème de Clark)

__

■ Example 2.5

2.2 Théorèmes de convergences

On donne maintenant quelque théorèmes de convergence pour les équations aux différences d'ordre 2.

Théorème 2.2.1 Considérons l'équation aux différences définie par

$$x_{n+1} = g(x_n, x_{n-1}), n = 0, 1, ...$$
 (2.3)

avec

$$g: [a,b] \times [a,b] \rightarrow [a,b], a,b \in \mathbb{R}.$$

Supposons que g est une fonction continue telle que

1) g(x,y) est croissante par rapport à $x \in [a,b]$ pour chaque $y \in [a,b]$ et g(x,y) et décroissante par rapport à $y \in [a,b]$ pour chaque $x \in [a,b]$,

35

2) Si (m, M) est une solution du système

$$\begin{cases}
 m = g(m, M) \\
 M = g(M, m)
\end{cases}$$

donc m = M.

Alors l'équation (2.3) admet un seul point d'équilibre \bar{x} et toute solution de l'équation (2.3) converge vers \bar{x} .

Proof.

Théorème 2.2.2 Considérons l'équation aux différences définie par

$$x_{n+1} = g(x_n, x_{n-1}), n = 0, 1, ...$$
 (2.4)

avec

$$g: [a,b] \times [a,b] \rightarrow [a,b], a,b \in \mathbb{R}.$$

Supposons que g est une fonction continue telle que

- 1) g(x,y) est décroissante par rapport à $x \in [a,b]$ pour chaque $y \in [a,b]$ et g(x,y) et croissante par rapport à $y \in [a,b]$ pour chaque $x \in [a,b]$,
- 2) Si (m, M) est une solution du système

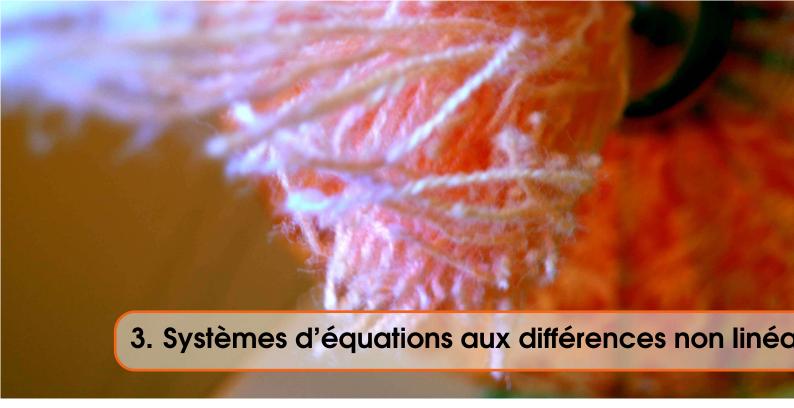
$$\begin{cases} m = g(M, m) \\ M = g(m, M) \end{cases}$$

donc m = M.

Alors l'équation (2.4) admet un seul point d'équilibre \bar{x} et toute solution de l'équation (2.4) converge vers \bar{x} .

■ Example 2.6

36	Chapter 2. Equations aux différences non linéaires



3.1 Définitions de Stabilité

Soient f_i des fonctions continûment différentiables

$$f_i: I_1^{k+1} \times I_2^{k+1} \times \ldots \times I_{2p+1}^{k+1} \longrightarrow I_i,$$

$$f:\, I^{k+1}\times J^{k+1} \longrightarrow I,\, g:\, I^{k+1}\times J^{k+1} \longrightarrow J$$

où I, J sont des intervalles réels. Considérons le système d'équations aux différences

$$\begin{cases} x_{n+1} = f(x_n, x_{n-1}, \dots, x_{n-k}, y_n, y_{n-1}, \dots, y_{n-k}) \\ y_{n+1} = g(x_n, x_{n-1}, \dots, x_{n-k}, y_n, y_{n-1}, \dots, y_{n-k}) \end{cases}$$
(3.1)

où
$$n, k \in \mathbb{N}_0$$
, $(x_{-k}, x_{-k+1}, \dots, x_0) \in I^{k+1}$ et $(y_{-k}, y_{-k+1}, \dots, y_0) \in J^{k+1}$.

Définissons la fonction

$$H: I^{k+1} \times J^{k+1} \longrightarrow J^{k+1} \times J^{k+1}$$

par

$$H(W) = (f_0(W), f_1(W), \dots, f_k(W), g_0(W), g_1(W), \dots, g_k(W))$$

avec

$$W = (u_0, u_1, \dots, u_k, v_0, v_1, \dots, v_k)^T,$$

$$f_0(W) = f(W), f_1(W) = u_0, \dots, f_k(W) = u_{k-1},$$

$$g_0(W) = g(W), g_1(W) = v_0, \dots, g_k(W) = v_{k-1}.$$

Posons,

$$W_n = [x_n, x_{n-1}, \dots, x_{n-k}, y_n, y_{n-1}, \dots, y_{n-k}]^T$$
.

Ainsi, le système (3.1) est équivalent au système

$$W_{n+1} = H(W_n), \quad n = 0, 1, \dots,$$
 (3.2)

c'est à dire

$$\begin{cases} x_{n+1} = & f(x_n, x_{n-1}, \dots, x_{n-k}, y_n, y_{n-1}, \dots, y_{n-k}) \\ x_n = & & x_n \\ & \vdots \\ x_{n-k+1} = & & x_{n-k+1} \\ y_{n+1} = & g(x_n, x_{n-1}, \dots, x_{n-k}, y_n, y_{n-1}, \dots, y_{n-k}) \\ y_n = & & y_n \\ & \vdots \\ y_{n-k+1} = & & y_{n-k+1} \end{cases}$$

■ Example 3.1

Définition 3.1.1

1. Un point $(\bar{x}; \bar{y})$ est dit point d'équilibre pour le système (3.1) si

$$\overline{x} = f(\overline{x}, \overline{x}, ..., \overline{x}, \overline{y}, \overline{y}, ..., \overline{y}),$$

$$\overline{y} = g(\overline{x}, \overline{x}, \overline{y}, \overline{y}, \overline{y}, ..., \overline{y})$$

 $\overline{y} = g(\overline{x}, \overline{x}, ..., \overline{x}, \overline{y}, \overline{y}, ..., \overline{y}).$ 2. Un point $\overline{W} = (\overline{x}, \overline{x}, ..., \overline{x}, \overline{y}, \overline{y}, ..., \overline{y}) \in I^{k+1} \times J^{k+1}$ est point d'équilibre du système (3.2) si

$$\overline{W} = H(\overline{W}).$$

■ Example 3.2

Définition 3.1.2 Une solution $\{(x_n, y_n)\}_{n=-k}^{+\infty}$ du système (3.1) est dite *éventuelleement périodique* de période $p \in \mathbb{N}_0$ si

$$\exists N \geq -k; \quad x_{n+p} = x_n, \quad y_{n+p} = y_n.$$

Si N = -k, on dit que la solution est *périodique* de période p.

■ Example 3.3

3.1.1 Stabilité des systèmes d'équations aux différences non linéaires

Définition 3.1.3 Soient \overline{W} un point d'équilibre du système (3.2) et $\| \cdot \|$ une norme, par exemple la norme euclidienne.

- 1. Le point d'équilibre \overline{W} est dit stable (ou localement stable) si pour chaque $\varepsilon > 0$, il existe $\delta > 0$ tel que $\| W_0 \overline{W} \| < \delta$ implique $\| W_n \overline{W} \| < \varepsilon$ pour $n \ge 0$.
- 2. Le point d'équilibre \overline{W} est dit asymptotiquement stable (ou localement asymptotiquement stable) s'il est stable et s'il existe $\gamma > 0$ tel que $\|W_0 \overline{W}\| < \gamma$ implique

$$||W_n - \overline{W}|| \to 0, n \to +\infty.$$

3. Le point d'équilibre \overline{W} est dit globalement attractif (respectivement globalement attractif de bassin d'attraction l'ensemble $G \subseteq I^{k+1} \times J^{k+1}$), si pour chaque W_0 (respectivement pour chaque $W_0 \in G$)

$$||W_n - \overline{W}|| \to 0, n \to +\infty.$$

4. Le point d'équilibre \overline{W} est dit globalement asymptotiquement stable (respectivement globalement asymptotiquement stable par rapport à G) si est localement stable, et si pour

chaque W_0 (respectivement pour chaque $W_0 \in G$),

$$||W_n - \overline{W}|| \to 0, n \to +\infty.$$

5. Le point d'équilibre \overline{W} est dit instable s'il n'est pas localement stable.

Il est claire que $(\bar{x}, \bar{y}) \in I \times J$ est un point d'équilibre du système (3.1) si et seulement si $\overline{W} = (\bar{x}, \bar{x}, \dots, \bar{x}, \bar{y}, \bar{y}, \dots, \bar{y}) \in I^{k+1} \times J^{k+1}$ est un point d'équilibre du système (3.2).

Définition 3.1.4 On appelle système linéaire associée au système (3.2) autour du point d'équilibre

$$\overline{W} = (\overline{x}, \overline{x}, \cdots, \overline{x}, \overline{y}, \overline{y}, \cdots, \overline{y})$$

le systtème

$$W_{n+1} = AW_n, n = 0, 1, ...$$

où A est la matrice Jacobienne de la fonction H au point d'équilibre \overline{W} , donnée par

$$A = \begin{bmatrix} \frac{\partial f_0}{\partial u_0}(\overline{W}) & \frac{\partial f_0}{\partial u_1}(\overline{W}) & \dots & \frac{\partial f_0}{\partial u_k}(\overline{W}) & \frac{\partial f_0}{\partial v_0}(\overline{W}) & \frac{\partial f_0}{\partial v_1}(\overline{W}) & \dots & \frac{\partial f_0}{\partial v_k}(\overline{W}) \\ \frac{\partial f_1}{\partial u_0}(\overline{W}) & \frac{\partial f_1}{\partial u_1}(\overline{W}) & \dots & \frac{\partial f_1}{\partial u_k}(\overline{W}) & \frac{\partial f_1}{\partial v_0}(\overline{W}) & \frac{\partial f_1}{\partial v_1}(\overline{W}) & \dots & \frac{\partial f_1}{\partial v_k}(\overline{W}) \\ \vdots & \vdots \\ \frac{\partial f_k}{\partial u_0}(\overline{W}) & \frac{\partial f_k}{\partial u_1}(\overline{W}) & \dots & \frac{\partial f_k}{\partial u_k}(\overline{W}) & \frac{\partial f_k}{\partial v_0}(\overline{W}) & \frac{\partial f_k}{\partial v_1}(\overline{W}) & \dots & \frac{\partial f_k}{\partial v_k}(\overline{W}) \\ \frac{\partial g_0}{\partial u_0}(\overline{W}) & \frac{\partial g_0}{\partial u_1}(\overline{W}) & \dots & \frac{\partial g_0}{\partial u_k}(\overline{W}) & \frac{\partial g_0}{\partial v_0}(\overline{W}) & \frac{\partial g_1}{\partial v_1}(\overline{W}) & \dots & \frac{\partial g_0}{\partial v_k}(\overline{W}) \\ \frac{\partial g_1}{\partial u_0}(\overline{W}) & \frac{\partial g_1}{\partial u_1}(\overline{W}) & \dots & \frac{\partial g_k}{\partial u_k}(\overline{W}) & \frac{\partial g_1}{\partial v_0}(\overline{W}) & \frac{\partial g_1}{\partial v_1}(\overline{W}) & \dots & \frac{\partial g_k}{\partial v_k}(\overline{W}) \\ \vdots & \vdots \\ \frac{\partial g_k}{\partial u_0}(\overline{W}) & \frac{\partial g_k}{\partial u_1}(\overline{W}) & \dots & \frac{\partial g_k}{\partial u_k}(\overline{W}) & \frac{\partial g_k}{\partial v_0}(\overline{W}) & \frac{\partial g_k}{\partial v_1}(\overline{W}) & \dots & \frac{\partial g_k}{\partial v_k}(\overline{W}) \end{bmatrix}$$

■ Example 3.4 Trouvez le système linéaire associé au système (??), autour du paint d'équilibre potitive $\left(\frac{-1+\sqrt{5}}{2},\frac{-1+\sqrt{5}}{2}\right)$.

3.1.2 Stabilité par linéarisation

Théorème 3.1.1

- 1. Si toutes les valeurs propres de la matrice Jacobienne A sont dans le disque unité ouvert $|\lambda| < 1$, alors le point d'équilibre \overline{W} du système (3.2) est localement asymptotiquement stable.
- 2. Si au moins une valeur propre de la matrice Jacobienne A a un module supérieur à un, alors le point d'équilibre \overline{W} du système (3.2) est instable.

■ Example 3.5

42	Chapter 3. Systèmes d'équations aux différences non linéaires