Abdelhafid Boussouf University Center, Mila Institute of Mathematics and Computer Science First Year of Computer Science Licence 2025–2026

Algebra I, Worksheet 3

<u>Exercise n°1</u>: Let E and F be two non-empty sets, and let R be a binary relation from E to F. Determine which of the following relations define functions from E to F.

- 1. $E = \{0, 1, 2, 5, 6\}, F = \{1, 2, 3\}, \text{ and } \Gamma_{\mathcal{R}_1} = \{(2, 1), (6, 3)\}.$
- 2. $E = \{1, 2, 3, 4\}, F = \{3, 5, 6\}, \text{ and } \Gamma_{\mathcal{R}_2} = \{(1, 3), (1, 5), (2, 5)\}.$
- 3. $E = \{1, 2, 3, 4\}, F = \{a, b, c\}, \text{ and } \Gamma_{\mathcal{R}_2} = \{(1, c), (2, b), (3, a), (4, b)\}.$

Exercise $\mathbf{n}^{\circ}2$: Let $f: E \times E \longrightarrow \mathbb{R}$ be an application such that

$$\forall a, b, c \in E : f(a, b) + f(b, c) + f(c, a) = 0.$$

Prove that the relation \Re defined on E by

$$\forall a, b \in E : a\Re b \iff f(a, b) = 0,$$

is an equivalence relation.

Exercise $n^{\circ}3$: Let *E* be a set, and let *A* and *B* be two subsets of *E*. Prove the following properties

1.
$$\varphi_A + \varphi_{C_F^A} = 1$$
 2. $\varphi_{A \cap B} = \varphi_A.\varphi_B$ 3. $\varphi_{A \setminus B} = \varphi_A(1 - \varphi_B)$.

where φ_A denotes the indicator mapping of the subset A, defined by

$$\varphi_A: E \longrightarrow \{0,1\}$$

$$x \longmapsto \varphi_A(x) = \begin{cases}
1, & \text{if } x \in A \\
0, & \text{if } x \notin A
\end{cases}$$

Exercise n°4:

- 1. Let $f: E \longrightarrow F$ be a mapping. Prove the following
- (a) $\forall A, B \in \mathcal{P}(E) : A \subset B \Longrightarrow f(A) \subset f(B)$.
- (b) $\forall A, B \in \mathcal{P}(E) : f(A \cap B) \subset f(A) \cap f(B)$.
- (d) $\forall C, D \in \mathcal{P}(F) : C \subset D \Longrightarrow f^{-1}(C) \subset f^{-1}(D)$.
- (e) $\forall C, D \in \mathcal{P}(F) : f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- 2. Let the mapping $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by f(x, y) = x y, and let $A = \{0, 1\} \times \{1, 2\}$.
- a. Find f(A). Deduce that f is not injective.

<u>Exercise n°5</u>: Let E = [0,1] and F = [0,2] be intervals in \mathbb{R} . Let f and g be two mappings defined by

$$f: E \longrightarrow F$$

 $x \longmapsto f(x) = 2 - x'$ $g: F \longrightarrow E$
 $x \longmapsto g(x) = (x - 1)^2$

- 1. Determine the mappings $f \circ g$ and $g \circ f$.
- 2. Find $f^{-1}(\{0\})$ and deduce that f is not surjective.
- 3. Prove that $g \circ f$ is bijective, and find $(g \circ f)^{-1}$.

Exercise n°6: Prove that the mapping

$$f: (\mathbb{N}^*, |) \longrightarrow (\mathbb{N}^*, |)$$

 $x \longmapsto f(x) = x^2$

is strictly increasing with respect to the divisibility relation.

Exercise n°7: (Supplementary Exercise)

Let E, F, and G be nonempty sets, and let $f: E \longrightarrow F$, $g: F \longrightarrow G$ be two mappings. Prove the following properties :

- 1. If f and g are injective, then $g \circ f$ is injective.
- 2. If f and g are surjective, then $g \circ f$ is surjective.
- 3. If f and g are bijective, then $g \circ f$ is bijective.
- 4. If $g \circ f$ is injective, then f is injective.
- 5. If $g \circ f$ is surjective, then g is surjective.