الجمهورية الجزائرية الديمقراطية الشعبية Democratic and Popular Republic of Algeria

وزارة التعليم العالي والبحث العلمي

Ministry of Higher Education and Scientific Research

Power Series

By: Dr. Smail KAOUACHE

Abdelhafid Boussouf University of Mila Institute of Mathematics and Computer Science

Department of Mathematics

Academic Year: 2025/2026

Contents

1	Pow	wer series						
	1.1	Real (or complex) power series	1				
		1.1.1	Radius of convergence of a power series	2				
		1.1.2	Cauchy-Hadamard rule	3				
		1.1.3	D'Alembert's rule	3				
		1.1.4	Normal convergence (Weierstrass rule)	4				
	1.2	rties of power series	4					
		1.2.1	Continuity of the sum of a power series	4				
		1.2.2	Derivability of power series	6				
		1.2.3	Integration of a power series	7				
	1.3	and products of power series	8					
		1.3.1	Sum of two power series	8				
		1.3.2	Product of two power series	9				
	1.4	Functions developable in a power series (Taylor series)						
	1.4.1 Functions developable in a power series							
		1.4.2	Necessary condition for development in power series .	10				
		1.4.3	Sufficient condition for development in power series .	11				
	1.5	Devel	opment in power series of usual functions	12				
		1.5.1	The sine and cosine functions	12				
		1.5.2	The exponential function $x \mapsto \exp(x) \dots \dots$	13				
		1.5.3	The logarithm function $x \mapsto \ln(1-x) \cdot \dots \cdot \dots$	13				
		1.5.4	Rational functions	14				
	1.6	6 Application to the resolution of certain differential equations						

Smail KAOUACHE.	Courses	of Power	Series	(2025/2026)	2

Bibliographie 16

Chapter 1

Power series

In this chapter, we will study a power series which are special forms of the series of functions of real or complex variables. For this, x denotes a real variable and z a complex variable.

1.1 Real (or complex) power series

Definition 1.1.1. A real (resp. complex) power series is any series of functions whose general term:

$$f_n(x) = a_n x^n, (1.1)$$

where $a_0, a_1, ..., a_n, ...$ are real numbers and $x \in \mathbb{R}$ (resp.

$$f_n(x) = a_n z^n, (1.2)$$

where $a_0, a_1, ..., a_n, ...$ are complex numbers and $z \in \mathbb{C}$.)

To unify the presentation of the following results, we consider the case where $x \in \mathbb{R}$.

Lemma 1.1.1. (Abel's Lemma) If the power series $\sum a_n x^n$ converges at the point $x_0 \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$, such that $|x| < x_0$.

Proof. Since the power series $\sum a_n x_0^n$ converges, its general term is bounded, there then exists M > 0, such that:

for all
$$n \in \mathbb{N}$$
, $\left| a_n x_0^n \right| \le M$. (1.3)

For all $x \in \mathbb{R}$, such that $|x| < x_0$, we thus have:

$$|a_n x^n| = |a_n x_0^n| \times \left| \frac{x}{x_0} \right|^n$$

$$\leq M \left| \frac{x}{x_0} \right|^n, \qquad (1.4)$$

and $\left|\frac{x}{x_0}\right|^n$ is the general term of a convergent geometric series $\left(\left|\frac{x}{x_0}\right| < 1\right)$; we deduce that the series $\sum a_n x^n$ converges absolutely.

1.1.1 Radius of convergence of a power series

Theorem 1.1.1. (theorem and definition) If a power series $\sum a_n x^n$ converges to the point $x_0 \neq 0$, then there exists a unique element $R \in \mathbb{R}_+ \cup \{+\infty\}$ verifying the following two conditions:

- 1. For all $x \in \mathbb{R}$, such that |x| < R, the power series $\sum a_n x^n$ absolutely converges.
- 2. For all $x \in \mathbb{R}$, such that |x| > R, the power series $\sum a_n x^n$ diverges.

The number R is called the radius of convergence of the series, and the set]-R, R[is called the interval(or domain) of convergence.

Proof. Suppose that there exists at least one real $x_0 \neq 0$, such that the series $\sum a_n x_0^n$ converges and one real x_1 such that the series $\sum a_n x_1^n$ diverges.

Since absolute convergence on [0, R[implies convergence on]-R, 0], and divergence on $]R, +\infty[$ implies divergence on $]-\infty, -R[$, we will study the nature of $\sum a_n x^n$ on \mathbb{R}_+ .

Let us then consider the set *D* of positive reals defined by:

$$D = \left\{ x \in \mathbb{R}_+, \sum a_n x^n \text{ converge.} \right\}$$
 (1.5)

Since the series $\sum a_n x_0^n$ converges, D is therefore non-empty.

According to the relation (1.5), the set D is majorized, it therefore admits a non-zero upper bound $R = \sup_{x \in \mathbb{R}_+} D$.

1. Prove that for all $x \in \mathbb{R}_+$, such that x < R, the power seires $\sum a_n x^n$ converges absolutely.

The second property of the upper bound states that there exists $r = x_0$ between x and R, such that $\sum a_n x^n$ converges at the point x_0 , so according to Abel, it is absolutely convergent for all $x \in \mathbb{R}_+$, such that $x < x_0$.

2. Let us now show that for all $x \in \mathbb{R}_+$, such that x > R, the power series $\sum a_n x^n$ diverges.

Suppose by contradiction that $\sum a_n x^n$ converges, and consider $y = \frac{R+x}{2}$. Since 0 < y < x, Abel's lemma states that the series $\sum a_n y^n$ converges, y is therefore a point of convergence, that is $y \in D$. Consequently $y \leq R$, and this is false, because by construction $y = \frac{R+x}{2} > R$, and the series $\sum a_n x^n$ diverges.

Cauchy-Hadamard rule

Theorem 1.1.2. The radius of convergence of a power series $\sum a_n x^n$ is given by:

$$R = \lim_{n \to +\infty} \left(\sqrt{|a_n|} \right)^{-1}$$
 (when this limit exists). (1.6)

Proof. It suffices to apply the Cauchy criterion on the series of functions $\sum |a_n x^n|$

Example 1.1.1. The power series $\sum_{n\geq 1} (\frac{n+1}{n})^{n^2} x^n$

D'Alembert's rule 1.1.3

Theorem 1.1.3. *The radius of convergence of a power series* $\sum a_n x^n$ *is given by:*

$$R = \lim_{n \to +\infty} \left(\left| \frac{a_{n+1}}{a_n} \right| \right)^{-1}$$
 (when this limit exists). (1.7)

Proof. It suffices to apply D'Alembert's criterion on the series of functions $\sum |a_n x^n|$

Example 1.1.2. The power series $\sum_{n\geq 1} \frac{n!}{n^n} x^n$ has for the radius of convergence R = e.

Normal convergence (Weierstrass rule) 1.1.4

Theorem 1.1.4. Any power series $\sum a_n x^n$ converges normally in any compact contained in the domain of convergence $]-R,R[\ (R>0).$

Proof. Let $[-\alpha, \alpha] \subset]-R$, $R[(\alpha > 0)$. In the segment $[-\alpha, \alpha]$, the series $\sum a_n x^n$ is bounded above in absolute value by the positive series $\sum |a_n| \alpha^n$, which is convergent, the series $\sum a_n x^n$ is therefore normally convergent.

Properties of power series 1.2

1.2.1 Continuity of the sum of a power series

Theorem 1.2.1. Let $\sum a_n x^n$ be a power series with a non-zero radius of convergence *R*; then the sum *S* of the series $\sum a_n x^n$ is a continuous function on any compact set contained in the domain of convergence]-R, R[.

Proof. For all $n \in \mathbb{N}$, each function $f_n(x) = a^n x^n$ is continuous on $[-\alpha, \alpha]$ of]-R, R[and the series $\sum a_n x^n$ converges uniformly on $[-\alpha, \alpha]$. By the property of the continuity of series of functions, the sum of the power series $\sum a_n x^n$ is a continuous function.

Theorem 1.2.2. (Abel's theorem) Let $\sum a_n x^n$ be a power series with radius of convergence $R \neq 0$. If this series converges for x = R (resp. for x = -R), then this series is uniformly convergent on [0,R] (resp. on [-R,0]) and the sum S of this series is continuous to the left of x = R (resp. to the right of x = -R), that is:

$$\lim_{x \to R^{-}} \sum a_n x^n = \sum a_n R^n = S(R), \tag{1.8}$$

(resp.

$$\lim_{x \to -R^+} \sum a_n x^n = \sum a_n (-1)^n R^n = S(-R). \tag{1.9}$$

Proof. We demonstrate this in the case where the series converges for x = R. Consider the new power series $\sum_{n\geq 0} a_n R^n y^n$ of the variable $y\in [0,1]$.

For y = 1, the series becomes $\sum_{n \ge 0} a_n R^n$, which is convergent, so it is uniformly convergent.

Let us now assume that $y \in [0,1[$. We use the Abel transformation, we can write:

$$\sum_{n\geq 0} a_n R^n y^n = \sum_{n\geq 0} (a_0 + a_1 R + \dots + a_n R^n) (y^n - y^{n+1})$$
 (1.10)

Let

$$g_n(y) = (a_0 + a_1 R + ... + a_n R^n) (y^n - y^{n+1}).$$

We just need to show that this series is uniformly convergent. Indeed:

$$|g_n(y)| = |(a_0 + a_1 R + ... + a_n R^n) (y^n - y^{n+1})|$$

$$\leq M(y^n - y^{n+1}), \qquad (1.11)$$

because $y^n - y^{n+1} \ge 0$ ((y^n) is decreasing) and the sequence of general term $\sum_{k=0}^{n} a_k R^k$ is bounded.

For all $y \in [0,1[$, the sequence of general term y^n converges uniformly to 0, hence according to the telescopic property, the series $\sum\limits_{n\geq 1}^{+\infty} (y^n-y^{n+1})$ is uniformly convergent. The comparison theorem therefore asserts the uniform convergence of the series $\sum\limits_{n\geq 0}^{+\infty} g_n$. It follows that the initial series $\sum\limits_{n\geq 0}^{+\infty} a_n R^n y^n$ is uniformly convergent on [0,1[.

We then deduce the uniform convergence of $\sum_{n\geq 0}^{+\infty} a_n R^n y^n$ on [0,1]. Since each function $a_n R^n y^n$ is continuous on [0,1], it results in the continuity of the sum of this series on [0,1], and moreover:

$$\sum_{n\geq 0}^{+\infty} a_n R^n y^n = \begin{cases} S(yR), & \text{if } y \in [0,1[\\ \sum_{n\geq 0} a_n R^n, & \text{if } y = 1. \end{cases}$$
 (1.12)

The continuity on the left at y = 1 then gives us:

$$\lim_{y \to 1^{-}} S(yR) = S(R) = \sum_{n \ge 0} a_n R^n$$
 (1.13)

Derivability of power series 1.2.2

Theorem 1.2.3. Let $\sum_{n=0}^{+\infty} a_n x^n$ be a power series of non-zero radius of convergence R, then its sum S is a function derivable on any compact [a, b] contained in the domain of convergence]-R, R[, and for any $x \in [a, b]$, we have:

$$\dot{S}(x) = \frac{\partial}{\partial x} \left(\sum_{n \ge 0}^{+\infty} a_n x^n \right) = \sum_{n \ge 0}^{+\infty} \frac{\partial}{\partial x} \left(a_n x^n \right) = \sum_{n \ge 1}^{+\infty} n a_n x^{n-1}. \tag{1.14}$$

Proof. It suffices to show that the power series $\sum_{n\geq 0}^{+\infty} a_n x^n$ and its derivative series $\sum_{n>1}^{+\infty} na_n x^n$ have the same radius of convergence R; then the theorem of derivation of series of functions applies since a power series converges uniformly on any compact contained in the domain of convergence. Indeed, let *R* be the radius of convergence of the series $\sum (n + 1)a_{n+1}x^n$.

1. If |x| < R, the series $\sum (n+1)a_{n+1}x^n$ is convergent. Since:

$$\left|a_{n+1}x^{n+1}\right| \le \left|(n+1)a_{n+1}x^{n+1}\right| = (n+1)\left|a_{n+1}x^{n}\right|\left|x\right|,$$
 (1.15)

the series $\sum |a_{n+1}x^{n+1}|$ is convergent, the series $\sum a_{n+1}x^{n+1}$ (or simply $\sum a_nx^n$) is therefore convergent.

2. If |x| > R, the series $\sum (n+1)a_{n+1}x^n$ is divergent. Let $y = \frac{R+|x|}{2} \in]R, |x|[$ the series $\sum (n+1)a_{n+1}y^n$ diverges and its general term is not bounded.

We can write:

$$\left| a_{n+1} x^{n+1} \right| = \left| (n+1) a_{n+1} y^n \right| \frac{1}{n+1} \left(\frac{|x|}{y} \right)^n. \tag{1.16}$$

Since $\frac{|x|}{y} > 1$, $\lim_{n \to +\infty} \frac{1}{n+1} \left(\frac{|x|}{y} \right)^n = +\infty$, so $\lim_{n \to +\infty} \left| a_{n+1} x^{n+1} \right| \neq 0$. The series $\sum a_{n+1}x^{n+1}$ (or simply $\sum a_nx^n$) is therefore divergent.

Corollary 1.2.1. Let $\sum_{n\geq 0}^{+\infty} a_n x^n$ be a power series of non-zero radius of convergence R, then its sum S is an infinitely derivable function on any compact contained in the domain of convergence]-R, R[, and for any $x \in]-R$, R[and $k \ge 1$ we have:

$$S^{(k)}(x) = \sum_{n\geq 0}^{+\infty} (n+k)(n+k-1)...(n+1)a_{n+k}x^n.$$
 (1.17)

Proof. It suffices to show by recurrence that the series $\sum_{n>0}^{+\infty} (n+k)(n+k-1)...(n+k-1)$ $1)a_{n+k}x^n$, k = 1, 2, have the same radius of convergence R.

Integration of a power series 1.2.3

Theorem 1.2.4. Any power series $\sum_{n\geq 0}^{+\infty} a_n x^n$ is term by term integrable on any compact contained in the domain of convergence]-R, R[. In particular, its sum S verifies:

$$\int_0^x S(t)dx = \sum_{n>0}^{+\infty} a_n \frac{x^{n+1}}{n+1}, \text{ for all } x \in]-R, R[.$$
 (1.18)

Proof. Let $x \in]-R, R[$. Since the power series $\sum_{n\geq 0}^{+\infty} a_n x^n$ converges uniformly on [0,x], the sum S is then a continuous function, and therefore integrable on [0, x]. The Equ. (1.18) is therefore well defined. Moreover, if we derivate the series (1.18), we find:

$$S(x) = \sum_{n>0}^{+\infty} a_n x^n, \text{ for all } x \in]-R, R[.$$
 (1.19)

The two power series $\sum_{n\geq 0}^{+\infty} a_n x^n$ and $\sum_{n\geq 1}^{+\infty} n a_n x^n$ then have the same convergence

Example 1.2.1. Consider the power series of general term:

$$a_n x^n = \frac{x^n}{n}, \ n \ge 1. \tag{1.20}$$

The d'Alembert criterion shows that this series is absolutely convergent on]-1,1[and has the sum S.

For all $x \in]-1,1[$, the series $\sum_{n>1}^{+\infty} a_n x^n$ is derivable term by term. We then have:

$$\dot{S}(x) = \sum_{n>0}^{+\infty} x^n = \frac{1}{1-x}, \text{ for all } x \in]-1, 1[.$$
 (1.21)

S is continuous on [0,x], so it is integrable on this interval. We then have:

$$S(x) = -\ln(1 - x). \tag{1.22}$$

On the other hand, if x = -1, the numerical series $\sum_{n>1}^{+\infty} \frac{(-1)^n}{n}$ converges, we can then apply Abel's theorem 1.2.2, we deduce that:

$$\sum_{n>1}^{+\infty} \frac{(-1)^n}{n} = -\ln 2. \tag{1.23}$$

Sums and products of power series 1.3

Sum of two power series 1.3.1

Let $\sum a_n x^n$ and $\sum b_n x^n$ be two power series with radius of convergence R_a and R_b respectively, we then have:

Proposition 1.3.1. The radius of convergence R of the power series $\sum (a_n + b_n)x^n$ verifies:

$$R \ge \inf(R_a, R_b), \text{ if } R_a = R_b.$$
 (1.24)
 $R = \inf(R_a, R_b), \text{ if } R_a \ne R_b$

Moreover, for all $|x| < \inf(R_a, R_b)$ *, we have:*

$$\sum (a_n + b_n)x^n = \sum a_n x^n + \sum b_n x^n.$$
 (1.25)

Proof. 1. When $|x| < \inf(R_a, R_b)$, the two series $\sum a_n x^n$ and $\sum b_n x^n$ are convergent, the series $\sum (a_n + b_n)x^n$ is therefore convergent, we deduce that:

$$R \ge \inf(R_a, R_b). \tag{1.26}$$

Let $R_a \neq R_b$. Suppose for example that $R_a < R_b$, and let $x \in \mathbb{R}$, such that $R_a < |x| < R_b$, the series $\sum a_n x^n$ is therefore divergent while the series $\sum b_n x^n$ is convergent. The series $\sum (a_n + b_n)x^n$ is then divergent, and moreover:

$$R \le R_a = \inf(R_a, R_b). \tag{1.27}$$

From (1.26) and (1.27), we deduce that $R = \inf(R_a, R_b)$.

2. If $R_a = R_b$, we cannot conclude anything about the radius of convergence

of the series $\sum (a_n + b_n)x^n$.

As an example, the two power series $\sum \left(\frac{n}{n+1}\right)^n x^n$ and $-\sum \left(\frac{n}{n+1}\right)^n x^n$ have the same radius of convergence $R_a = R_b = e$, while the sum series is the series with a zero general term, and therefore $R = +\infty$.

1.3.2 Product of two power series

Proposition 1.3.2. *The radius of convergence R of the series with general term:*

$$c_n x^n = \left(\sum_{k=0}^n a_k b_{n-k}\right) x^n \tag{1.28}$$

verifies $R \ge \inf(R_a, R_b)$. *In addition, for all* $|x| < \inf(R_a, R_b)$, *we have:*

$$\sum_{n\geq 0} c_n x^n = \left(\sum_{n\geq 0} a_n x^n\right) \times \left(\sum_{n\geq 0} b_n x^n\right). \tag{1.29}$$

Proof. let $|x| < \inf(R_a, R_b)$. Since the two series $(\sum_{n \ge 0} a_n x^n)$ and $(\sum_{n \ge 0} b_n x^n)$ are absolutely convergent, the Cauchy product series of general term:

$$\sum_{k=0}^{n} (a_k x^k) (b_{n-k} x^{n-k}) = \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n,$$

is also absolutely convergent, and for all $|x| < \inf(R_a, R_b)$, we have:

$$\sum_{n\geq 0} c_n x^n = \sum_{n\geq 0} \left[\sum_{k=0}^n \left(a_k x^k \right) \left(b_{n-k} x^{n-k} \right) \right] = \left(\sum_{n\geq 0} a_n x^n \right) \times \left(\sum_{n\geq 0} b_n x^n \right). \tag{1.30}$$

1.4 Functions developable in a power series (Taylor series)

In this section, we will study the problem in reverse.

1.4.1 Functions developable in a power series

Definition 1.4.1. Let x_0 be a given real number and let $f: \mathbb{R} \to \mathbb{R}$ be a function defined in the neighborhood of x_0 . We say that f is developable in a power series at the point x_0 , if there exists a power series $\sum_{n\geq 0} a_n x^n$ with radius of convergence R > 0, such that:

for all
$$x \in \mathbb{R}$$
, $|x - x_0| < R$, $f(x) = \sum_{n > 0} a_n (x - x_0)^n$ (1.31)

By performing the change of variable $X = x - x_0$, we then speak of a function that is developable in a power series at the origin.

Definition 1.4.2. A function f of a complex variable z is said to be developable in a power series at the point z_0 , if there exists a power series $\sum_{n\geq 0} a_n (z-z_0)^n$, with radius of convergence R > 0, such that:

for all
$$z \in \mathbb{C}$$
, $|z - z_0| < R$, $f(z) = \sum_{n > 0} a_n (z - z_0)^n$. (1.32)

Definition 1.4.3. If f is indefinitely differentiable, the power series with general term $\frac{f^{(k)}(0)}{k!}x^n$ is called Taylor series of f.

Necessary condition for development in power series

Theorem 1.4.1. When a function f is developable in power series, then f is of class $C^{+\infty}$ on any compact contained in the domain of convergence]-R, R[and f coincides with its Taylor series. Moreover, if the power series development exists, it is unique.

Proof. Suppose that f is developable in a power series at the origin, then there exists a power series $\sum_{n\geq 0} a_n x^n$ with a non-zero radius of convergence R, such that:

for all
$$x \in \mathbb{R}$$
, $|x| < R$, we have $f(x) = \sum_{n > 0} a_n x^n = S(x)$, (1.33)

where *S* is the sum of this series.

According to the theorem of the derivation of power series, we deduce that *f* is of class $C^{+\infty}$ on]–R, R[and moreover:

$$f^{(k)}(x) = \sum_{n>0}^{+\infty} (n+k)(n+k-1)...(n+1)a_{n+k}x^n.$$
 (1.34)

It follows that:

$$f^{(k)}(0) = a_k k!$$
, i.e. $a_k = \frac{f^{(k)}(0)}{k!}$, (1.35)

which ensures the uniqueness of the development.

Remak 1.1. The converse of the previous theorem is false. Indeed, the condition that f is of class $C^{+\infty}$ on any compact contained in the domain of convergence]-R, R[, is not sufficient to ensure that this function is developable in a power series, even if its Taylor series converges. As an example, we consider the function f defined on $\mathbb R$ by:

$$f(x) = \begin{cases} \exp(-\frac{1}{x^2}), & \text{if } x > 0, \\ 0, & \text{if } x \le 0. \end{cases}$$
 (1.36)

By recurrence, we can easily verify that this function is of class $C^{+\infty}$ on \mathbb{R} . Moreover for all $k \in \mathbb{N}$, the derivative of order k of f at point 0 is zero. So, if we assume that f is developable in a power series, its development is the zero series, which is impossible since $f(x) \neq 0$, for all $x \in]-R, R[$.

Sufficient condition for development in power 1.4.3 series

Theorem 1.4.2. *Let* f *be an indefinitely derivable function on an interval*]-r,+r[. A sufficient condition for f to be developable in a power series is the following:

$$\exists M > 0, \ \forall n \in \mathbb{N}, \forall x \in]-r, +r[, \ |f^{(n)}(x)| \le M.$$
 (1.37)

In addition, for all $x \in]-r, +r[$, we have:

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$
 (1.38)

Proof. Since f is indefinitely derivable on]-r,+r[, the formula of Mac-Laurin gives:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{n!} x^{k} + \frac{x^{n+1}}{(+1)!} f^{(n+1)}(\theta x), \ \theta \in]0,1[.$$
 (1.39)

It is enough to show that $\lim_{n\to+\infty} \frac{x^{n+1}}{(+1)!} f^{(n+1)}(\theta x) = 0$. Indeed, by hypothesis, we can write:

$$0 \le \left| \frac{x^{n+1}}{(+1)!} f^{(n+1)}(\theta x) \right| \le M \left| \frac{x^{n+1}}{(n+1)!} \right|. \tag{1.40}$$

Since $\frac{x^{n+1}}{(n+1)!}$ is the general term of a convergent series, we therefore have:

$$\lim_{n \to +\infty} \frac{x^{n+1}}{(n+1)!} = 0. \tag{1.41}$$

Consequently:

$$\lim_{n \to +\infty} \frac{x^{n+1}}{(+1)!} f^{(n+1)}(\theta x) = 0. \tag{1.42}$$

The function f is indeed the sum of its Taylor series on]-r,+r[.

1.5 Development in power series of usual functions

1.5.1 The sine and cosine functions

These two functions are of class $C^{+\infty}$ on \mathbb{R} . By recurrence, we can easily verify that their n th derivatives are:

$$\sin^{(n)}(x) = \sin(x + n\frac{\pi}{2})$$
 (1.43)

$$\cos^{(n)}(x) = \cos(x + n\frac{\pi}{2}),$$
 (1.44)

are indeed majored by M=1, for all $x \in \mathbb{R}$. They are therefore developable in power series on \mathbb{R} , which means that $R=+\infty$. We therefore have:

$$\sin(x) = \sum_{n>0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \text{ for all } x \in \mathbb{R}.$$
 (1.45)

$$\cos(x) = \sum_{n \ge 0} \frac{(-1)^n}{(2n)!} x^{2n}, \text{ for all } x \in \mathbb{R}.$$
 (1.46)

The exponential function $x \mapsto \exp(x)$ 1.5.2

This function is of class $C^{+\infty}$ on any interval]-r,r[. By recurrence, we can easily verify that its n th derivative is also equal to exp(x), and is well bounded above $\exp(r)$. It is therefore developable in a power series on any interval]-r,r[. Since r is arbitrary, we deduce that $R=+\infty$. We therefore have:

$$\exp(x) = \sum_{n \ge 0} \frac{x^n}{n!}, \text{ for all } x \in \mathbb{R}.$$
 (1.47)

The logarithm function $x \mapsto \ln(1-x)$ 1.5.3

The function $x \mapsto \frac{1}{1-x}$ is developable in a power series on]-1,1[. Indeed, let $(x^n)_{n \in \mathbb{N}}$ be a geometric sequence, we can write:

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{1-x}, x \in \mathbb{R}/\{1\}.$$
 (1.48)

We deduce that:

$$\frac{1}{1-x} = \sum_{n>0} x^n, x \in]-1,1[. \tag{1.49}$$

Integrating term by term, we obtain:

$$\ln(1-x) = -\sum_{n>0} \frac{x^{n+1}}{n+1}, x \in [-1,1[\text{ (because } \sum_{n>0} \frac{(-1)^{n+1}}{n+1} \text{ converges)}. (1.50)$$

Remak 1.2. The techniques of the previous parts can be applied to obtain other developments from these cases. These techniques are adapted to the following functions:

$$\cosh(x) = \frac{\exp(x) + \exp(-x)}{2} = \sum_{n \ge 0} \frac{x^{2n}}{(2n)!}, \ x \in \mathbb{R}.$$
 (1.51)

$$\sinh(x) = \frac{\exp(x) - \exp(-x)}{2} = \sum_{n \ge 0} \frac{x^{2n+1}}{(2n+1)!}, \ x \in \mathbb{R}.$$
 (1.52)

$$\frac{1}{ax+b} = \frac{1}{b} \frac{1}{1 - (-\frac{a}{b}x)} = \frac{1}{b} \sum_{n \ge 0} (-1)^n (\frac{a}{b})^n x^n, x \in \left] - \left| \frac{b}{a} \right|, \left| \frac{b}{a} \right| \right[\text{ and } a, b \ne 0. (1.53)$$

$$\frac{1}{1+x^2} = \frac{1}{1+(-x^2)} = \sum_{n\geq 0} (-1)^n x^{2n}, x \in]-1,1[.$$
 (1.54)

$$\arctan(x) = \int_0^x \frac{dt}{1+t^2} = \sum_{n>0} \frac{(-1)^n x^{2n+1}}{2n+1}, x \in [-1,1].$$
 (1.55)

$$\arg th(x) = \frac{1}{2}\ln(\frac{1+x}{1-x}) = \sum_{n\geq 0} \frac{x^{2n+1}}{2n+1}, x \in [-1,1[.$$
 (1.56)

1.5.4 Rational functions

The decomposition of a rational function into simple elements and the use of the power series development of the function $x \mapsto f(x) = \frac{1}{1-x}$, allow us to develop a rational function in a power series.

Example 1.5.1. We consider the rational function $f(x) = \frac{1}{2-x}$. We then have

$$f(x) = -\frac{1}{2} \times \frac{1}{1 - \frac{x}{2}} = -\frac{1}{2} \sum_{n > 0} \left(\frac{x}{2}\right)^n, \ x \in]-2, 2[.$$
 (1.57)

1.6 Application to the resolution of certain differential equations

We will present here an example of a differential equation, a method that allows us to find a solution in the form of a function that can be developed in a power series over a certain interval]-r,r[.

Let us then consider the differential equation:

$$2x\dot{y} + y - \frac{1}{1 - x} = 0. ag{1.58}$$

Suppose there exists a power series $y(x) = \sum_{n \ge 0} a_n x^n$ with radius of convergence r > 0.

For all $x \in]-1, 1[$,

$$\frac{1}{1-x} = 1 + \sum_{n \ge 1} x^n. \tag{1.59}$$

So, we have:

$$2x\dot{y} + y - \frac{1}{1-x} = a_0 + \sum_{n\geq 0} (2n+1)a_n x^n - \left(1 + \sum_{n\geq 1} x^n\right) = 0.$$
 (1.60)

We deduce that:

$$a_0 = 1 \text{ and } a_n = \frac{1}{2n+1}.$$
 (1.61)

Therefore:

$$y(x) = \sum_{n \ge 0} \frac{x^n}{2n+1}, \]-1,1[$$
 (1.62)

Bibliography

- [1] J. Lelong Ferrand. Exercices résolus d'analyse. Edition Dunod, (1977).
- [2] J. Lelong-Ferrand et J. M. Arnaudiés. Cours de mathématiques. *Tome 2, Edition Dunod,* (1978).
- [3] J. Rivaud. Analyse Séries, équations différentielles: Exercices avec solutions. *Vuibert*, (1981).
- [4] C. Servien. Analyse 3: Séries numériques, suites et séries de fonctions, Intégrales. *Ellipses*, (1995).
- [5] J.P. Ramis et A. Warusfel. Mathématiques. Tout-en-un pour la Licence. *Niveau L1 Editions Dunod*.
- [6] J. Dixmier. Cours de Mathématiques du premier cycle. *Editions Gauthier-Villars*.
- [7] L. Bourguet. Sur les intégrales Eulériennes et quelques autres fonctions uniformes. *Acta Math.* 2, 261-295, 1883.