
 الجمهىريت الجسائريت الديمقراطيت الشعبيت

Democratic and Popular Republic of Algeria 

 العلمي والبحث العالي وزارة التعليم

 Ministry of Higher Education and Scientific Research 

  

                                                 

N°:…….. 
 

 

 

Présenté par : 

 

By: Dr. Smail KAOUACHE 

Abdelhafid Boussouf University of Mila 

Institute of Mathematics and Computer Science 

Department of  Mathematics 

 

 

 

 

Academic Year: 2025/2026 

 

Power Series 



Contents

1 Power series 1

1.1 Real (or complex) power series . . . . . . . . . . . . . . . . . . 1

1.1.1 Radius of convergence of a power series . . . . . . . . . 2

1.1.2 Cauchy-Hadamard rule . . . . . . . . . . . . . . . . . . 3

1.1.3 D’Alembert’s rule . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Normal convergence (Weierstrass rule) . . . . . . . . . 4

1.2 Properties of power series . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Continuity of the sum of a power series . . . . . . . . . 4

1.2.2 Derivability of power series . . . . . . . . . . . . . . . . 6

1.2.3 Integration of a power series . . . . . . . . . . . . . . . 7

1.3 Sums and products of power series . . . . . . . . . . . . . . . . 8

1.3.1 Sum of two power series . . . . . . . . . . . . . . . . . . 8

1.3.2 Product of two power series . . . . . . . . . . . . . . . . 9

1.4 Functions developable in a power series ( Taylor series ) . . . 9

1.4.1 Functions developable in a power series . . . . . . . . 10

1.4.2 Necessary condition for development in power series . 10

1.4.3 Sufficient condition for development in power series . 11

1.5 Development in power series of usual functions . . . . . . . . 12

1.5.1 The sine and cosine functions . . . . . . . . . . . . . . . 12

1.5.2 The exponential function x 7→ exp(x) . . . . . . . . . . . 13

1.5.3 The logarithm function x 7→ ln(1 − x) . . . . . . . . . . . 13

1.5.4 Rational functions . . . . . . . . . . . . . . . . . . . . . 14

1.6 Application to the resolution of certain differential equations . 14

1



Smail KAOUACHE. Courses of Power Series (2025/2026) 2

Bibliographie 16



Chapter 1

Power series

In this chapter, we will study a power series which are special forms of the

series of functions of real or complex variables. For this, x denotes a real

variable and z a complex variable.

1.1 Real (or complex) power series

Definition 1.1.1. A real (resp. complex) power series is any series of functions

whose general term:

fn(x) = anxn, (1.1)

where a0, a1, ..., an, ... are real numbers and x ∈ R (resp.

fn(x) = anzn, (1.2)

where a0, a1, ..., an, ... are complex numbers and z ∈ C.)

To unify the presentation of the following results, we consider the case

where x ∈ R.

Lemma 1.1.1. (Abel’s Lemma) If the power series
∑

anxn converges at the point

x0 , 0, then it converges absolutely for all x ∈ R, such that |x| < x0.

1
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Proof. Since the power series
∑

anxn
0 converges, its general term is bounded,

there then exists M > 0, such that:

for all n ∈N,
∣∣∣anxn

0

∣∣∣ ≤M. (1.3)

For all x ∈ R, such that |x| < x0, we thus have:

|anxn
| =

∣∣∣anxn
0

∣∣∣ × ∣∣∣∣∣ x
x0

∣∣∣∣∣n
≤ M

∣∣∣∣∣ x
x0

∣∣∣∣∣n , (1.4)

and
∣∣∣∣∣ x
x0

∣∣∣∣∣n is the general term of a convergent geometric series (
∣∣∣∣∣ x
x0

∣∣∣∣∣ < 1); we

deduce that the series
∑

anxn converges absolutely. �

1.1.1 Radius of convergence of a power series

Theorem 1.1.1. (theorem and definition) If a power series
∑

anxn converges to the

point x0 , 0, then there exists a unique element R ∈ R+ ∪ {+∞} verifying the

following two conditions:

1. For all x ∈ R, such that |x| < R, the power series
∑

anxn absolutely converges .

2. For all x ∈ R, such that |x| > R, the power series
∑

anxn diverges.

The number R is called the radius of convergence of the series, and the set ]−R,R[

is called the interval( or domain) of convergence.

Proof. Suppose that there exists at least one real x0 , 0, such that the series∑
anxn

0 converges and one real x1 such that the series
∑

anxn
1 diverges.

Since absolute convergence on [0,R[ implies convergence on ]−R, 0], and

divergence on ]R,+∞[ implies divergence on ]−∞,−R[, we will study the

nature of
∑

anxn on R+.

Let us then consider the set D of positive reals defined by:

D =
{
x ∈ R+,

∑
anxn converge.

}
(1.5)

Since the series
∑

anxn
0 converges, D is therefore non-empty.

According to the relation (1.5), the set D is majorized, it therefore admits a

non-zero upper bound R = supx∈R+
D.
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1. Prove that for all x ∈ R+, such that x < R, the power seires
∑

anxn

converges absolutely.

The second property of the upper bound states that there exists r = x0

between x and R, such that
∑

anxn converges at the point x0, so according to

Abel, it is absolutely convergent for all x ∈ R+, such that x < x0.

2. Let us now show that for all x ∈ R+, such that x > R, the power series∑
anxn diverges.

Suppose by contradiction that
∑

anxn converges, and consider y =
R + x

2
.

Since 0 < y < x, Abel’s lemma states that the series
∑

anyn converges, y is

therefore a point of convergence, that is y ∈ D. Consequently y ≤ R, and

this is false, because by construction y =
R + x

2
> R, and the series

∑
anxn

diverges. �

1.1.2 Cauchy-Hadamard rule

Theorem 1.1.2. The radius of convergence of a power series
∑

anxn is given by:

R = lim
n→+∞

(√
|an|

)−1
( when this limit exists ). (1.6)

Proof. It suffices to apply the Cauchy criterion on the series of functions∑
|anxn

| �

Example 1.1.1. The power series
∑

n≥1(
n + 1

n
)n2 xn

1.1.3 D’Alembert’s rule

Theorem 1.1.3. The radius of convergence of a power series
∑

anxn is given by:

R = lim
n→+∞

(∣∣∣∣∣an+1

an

∣∣∣∣∣)−1

( when this limit exists ). (1.7)

Proof. It suffices to apply D’Alembert’s criterion on the series of functions∑
|anxn

| �

Example 1.1.2. The power series
∑

n≥1
n!
nn xn has for the radius of convergence

R = e.
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1.1.4 Normal convergence (Weierstrass rule)

Theorem 1.1.4. Any power series
∑

anxn converges normally in any compact

contained in the domain of convergence ]−R,R[ (R > 0).

Proof. Let [−α, α] ⊂ ]−R,R[ (α > 0). In the segment [−α, α] , the series
∑

anxn

is bounded above in absolute value by the positive series
∑
|an|αn, which is

convergent, the series
∑

anxn is therefore normally convergent. �

1.2 Properties of power series

1.2.1 Continuity of the sum of a power series

Theorem 1.2.1. Let
∑

anxn be a power series with a non-zero radius of convergence

R; then the sum S of the series
∑

anxn is a continuous function on any compact set

contained in the domain of convergence ]−R,R[.

Proof. For all n ∈ N, each function fn(x) = anxn is continuous on [−α, α] of

]−R,R[ and the series
∑

anxn converges uniformly on [−α, α] .By the property

of the continuity of series of functions, the sum of the power series
∑

anxn is

a continuous function. �

Theorem 1.2.2. (Abel’s theorem) Let
∑

anxn be a power series with radius of

convergence R , 0. If this series converges for x = R (resp. for x = −R), then this

series is uniformly convergent on [0,R] (resp. on [−R, 0] ) and the sum S of this

series is continuous to the left of x = R (resp. to the right of x = −R), that is:

lim
x→R−

∑
anxn =

∑
anRn = S(R), (1.8)

(resp.

lim
x→−R+

∑
anxn =

∑
an(−1)nRn = S(−R). (1.9)

Proof. We demonstrate this in the case where the series converges for x = R.

Consider the new power series
∑

n≥0 anRnyn of the variable y ∈ [0, 1].
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For y = 1, the series becomes
∑

n≥0 anRn, which is convergent, so it is uni-

formly convergent.

Let us now assume that y ∈ [0, 1[ . We use the Abel transformation, we can

write: ∑
n≥0

anRnyn =
∑
n≥0

(a0 + a1R + ... + anRn)
(
yn
− yn+1

)
(1.10)

Let

gn(y) = (a0 + a1R + ... + anRn)
(
yn
− yn+1

)
.

We just need to show that this series is uniformly convergent.

Indeed: ∣∣∣gn(y)
∣∣∣ =

∣∣∣∣(a0 + a1R + ... + anRn)
(
yn
− yn+1

)∣∣∣∣
≤ M(yn

− yn+1), (1.11)

because yn
− yn+1

≥ 0 ((yn) is decreasing) and the sequence of general term∑n
k=0 akRk is bounded.

For all y ∈ [0, 1[, the sequence of general term yn converges uniformly

to 0, hence according to the telescopic property, the series
+∞∑
n≥1

(yn
− yn+1)

is uniformly convergent. The comparison theorem therefore asserts the

uniform convergence of the series
+∞∑
n≥0

gn. It follows that the initial series

+∞∑
n≥0

anRnyn is uniformly convergent on [0, 1[ .

We then deduce the uniform convergence of
+∞∑
n≥0

anRnyn on [0, 1] .

Since each function anRnyn is continuous on [0, 1] , it results in the continuity

of the sum of this series on [0, 1] , and moreover:

+∞∑
n≥0

anRnyn =

 S(yR), if y ∈ [0, 1[∑
n≥0 anRn, if y = 1.

(1.12)

The continuity on the left at y = 1 then gives us:

lim
y→1−

S(yR) = S(R) =
∑
n≥0

anRn (1.13)

�
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1.2.2 Derivability of power series

Theorem 1.2.3. Let
+∞∑
n≥0

anxn be a power series of non-zero radius of convergence R,

then its sum S is a function derivable on any compact [a, b] contained in the domain

of convergence ]−R,R[, and for any x ∈ [a, b], we have:

Ṡ(x) =
∂
∂x

 +∞∑
n≥0

anxn

 =

+∞∑
n≥0

∂
∂x

(anxn) =

+∞∑
n≥1

nanxn−1. (1.14)

Proof. It suffices to show that the power series
+∞∑
n≥0

anxn and its derivative

series
+∞∑
n≥1

nanxn have the same radius of convergence R; then the theorem

of derivation of series of functions applies since a power series converges

uniformly on any compact contained in the domain of convergence. Indeed,

let R be the radius of convergence of the series
∑

(n + 1)an+1xn.

1. If |x| < R, the series
∑

(n + 1)an+1xn is convergent.

Since: ∣∣∣an+1xn+1
∣∣∣ ≤ ∣∣∣(n + 1)an+xn+1

∣∣∣ = (n + 1) |an+xn
| |x| , (1.15)

the series
∑ ∣∣∣an+xn+1

∣∣∣ is convergent, the series
∑

an+1xn+1( or simply
∑

anxn)

is therefore convergent.

2. If |x| > R, the series
∑

(n + 1)an+1xn is divergent. Let y =
R + |x|

2
∈ ]R, |x|[,

the series
∑

(n + 1)an+1yn diverges and its general term is not bounded.

We can write: ∣∣∣an+1xn+1
∣∣∣ =

∣∣∣(n + 1)an+1yn
∣∣∣ 1

n + 1

(
|x|
y

)n

. (1.16)

Since
|x|
y
> 1, limn→+∞

1
n+1

(
|x|
y

)n

= +∞, so limn→+∞

∣∣∣an+1xn+1
∣∣∣ , 0.

The series
∑

an+1xn+1( or simply
∑

anxn) is therefore divergent. �

Corollary 1.2.1. Let
+∞∑
n≥0

anxn be a power series of non-zero radius of convergence

R, then its sum S is an infinitely derivable function on any compact contained in

the domain of convergence ]−R,R[, and for any x ∈ ]−R,R[ and k ≥ 1 we have:

S(k)(x) =

+∞∑
n≥0

(n + k)(n + k − 1)...(n + 1)an+kxn. (1.17)
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Proof. It suffices to show by recurrence that the series
+∞∑
n≥0

(n+k)(n+k−1)...(n+

1)an+kxn, k = 1, 2, .... have the same radius of convergence R. �

1.2.3 Integration of a power series

Theorem 1.2.4. Any power series
+∞∑
n≥0

anxn is term by term integrable on any

compact contained in the domain of convergence ]−R,R[ . In particular, its sum S

verifies: ∫ x

0
S(t)dx =

+∞∑
n≥0

an
xn+1

n + 1
, for all x ∈ ]−R,R[ . (1.18)

Proof. Let x ∈ ]−R,R[ . Since the power series
+∞∑
n≥0

anxn converges uniformly

on [0, x] , the sum S is then a continuous function, and therefore integrable

on [0, x]. The Equ. (1.18) is therefore well defined. Moreover, if we derivate

the series (1.18), we find:

S(x) =

+∞∑
n≥0

anxn, for all x ∈ ]−R,R[ . (1.19)

The two power series
+∞∑
n≥0

anxn and
+∞∑
n≥1

nanxn then have the same convergence

radius R . �

Example 1.2.1. Consider the power series of general term:

anxn =
xn

n
, n ≥ 1. (1.20)

The d’Alembert criterion shows that this series is absolutely convergent on ]−1, 1[

and has the sum S.

For all x ∈ ]−1, 1[ , the series
+∞∑
n≥1

anxn is derivable term by term. We then have:

Ṡ(x) =

+∞∑
n≥0

xn =
1

1 − x
, for all x ∈ ]−1, 1[ . (1.21)

S is continuous on [0, x], so it is integrable on this interval. We then have:

S(x) = − ln(1 − x). (1.22)
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On the other hand, if x = −1, the numerical series
+∞∑
n≥1

(−1)n

n
converges, we can then

apply Abel’s theorem 1.2.2, we deduce that:

+∞∑
n≥1

(−1)n

n
= − ln 2. (1.23)

1.3 Sums and products of power series

1.3.1 Sum of two power series

Let
∑

anxn and
∑

bnxn be two power series with radius of convergence Ra

and Rb respectively, we then have:

Proposition 1.3.1. The radius of convergence R of the power series
∑

(an + bn)xn

verifies:

R ≥ inf(Ra,Rb), if Ra = Rb. (1.24)

R = inf(Ra,Rb), if Ra , Rb

Moreover, for all |x| < inf(Ra,Rb), we have:∑
(an + bn)xn =

∑
anxn +

∑
bnxn. (1.25)

Proof. 1. When |x| < inf(Ra,Rb), the two series
∑

anxn and
∑

bnxn are conver-

gent, the series
∑

(an + bn)xn is therefore convergent, we deduce that:

R ≥ inf(Ra,Rb). (1.26)

Let Ra , Rb. Suppose for example that Ra < Rb, and let x ∈ R, such that

Ra < |x| < Rb, the series
∑

anxn is therefore divergent while the series
∑

bnxn

is convergent. The series
∑

(an + bn)xn is then divergent, and moreover:

R ≤ Ra = inf(Ra,Rb). (1.27)

From (1.26) and (1.27), we deduce that R = inf(Ra,Rb).

2. If Ra = Rb, we cannot conclude anything about the radius of convergence
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of the series
∑

(an + bn)xn.

As an example, the two power series
∑( n

n + 1

)n
xn and −

∑( n
n + 1

)n
xn have

the same radius of convergence Ra = Rb = e,while the sum series is the series

with a zero general term, and therefore R = +∞. �

1.3.2 Product of two power series

Proposition 1.3.2. The radius of convergence R of the series with general term:

cnxn =

 n∑
k=0

akbn−k

 xn (1.28)

verifies R ≥ inf(Ra,Rb). In addition, for all |x| < inf(Ra,Rb), we have:

∑
n≥0

cnxn =

∑
n≥0

anxn

 ×
∑

n≥0

bnxn

 . (1.29)

Proof. let |x| < inf(Ra,Rb). Since the two series
(∑

n≥0 anxn) and
(∑

n≥0 bnxn) are

absolutely convergent, the Cauchy product series of general term:

n∑
k=0

(
akxk

) (
bn−kxn−k

)
=

 n∑
k=0

akbn−k

 xn,

is also absolutely convergent, and for all |x| < inf(Ra,Rb), we have:

∑
n≥0

cnxn =
∑
n≥0

 n∑
k=0

(
akxk

) (
bn−kxn−k

) =

∑
n≥0

anxn

 ×
∑

n≥0

bnxn

 . (1.30)

�

1.4 Functions developable in a power se-

ries ( Taylor series )

In this section, we will study the problem in reverse.
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1.4.1 Functions developable in a power series

Definition 1.4.1. Let x0 be a given real number and let f : R → R be a function

defined in the neighborhood of x0. We say that f is developable in a power series

at the point x0, if there exists a power series
∑

n≥0 anxn with radius of convergence

R > 0, such that:

for all x ∈ R, |x − x0| < R, f (x) =
∑
n≥0

an(x − x0)n (1.31)

By performing the change of variable X = x − x0, we then speak of a function that

is developable in a power series at the origin.

Definition 1.4.2. A function f of a complex variable z is said to be developable in

a power series at the point z0, if there exists a power series
∑

n≥0 an(z − z0)n, with

radius of convergence R > 0, such that:

for all z ∈ C, |z − z0| < R, f (z) =
∑
n≥0

an(z − z0)n. (1.32)

Definition 1.4.3. If f is indefinitely differentiable, the power series with general

term
f (k)(0)

k!
xn is called Taylor series of f .

1.4.2 Necessary condition for development in power

series

Theorem 1.4.1. When a function f is developable in power series, then f is of

class C+∞ on any compact contained in the domain of convergence ]−R,R[ and f

coincides with its Taylor series. Moreover, if the power series development exists, it

is unique.

Proof. Suppose that f is developable in a power series at the origin, then

there exists a power series
∑

n≥0 anxn with a non-zero radius of convergence

R, such that:

for all x ∈ R, |x| < R, we have f (x) =
∑
n≥0

anxn = S(x), (1.33)
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where S is the sum of this series.

According to the theorem of the derivation of power series, we deduce that

f is of class C+∞ on ]−R,R[ and moreover:

f (k)(x) =

+∞∑
n≥0

(n + k)(n + k − 1)...(n + 1)an+kxn. (1.34)

It follows that:

f (k)(0) = akk!, i.e. ak =
f (k)(0)

k!
, (1.35)

which ensures the uniqueness of the development. �

Remak 1.1. The converse of the previous theorem is false. Indeed, the condition that

f is of class C+∞ on any compact contained in the domain of convergence ]−R,R[,

is not sufficient to ensure that this function is developable in a power series, even if

its Taylor series converges. As an example, we consider the function f defined onR

by:

f (x) =

 exp(−
1
x2 ), if x > 0,

0, if x ≤ 0.
(1.36)

By recurrence, we can easily verify that this function is of class C+∞ onR. Moreover

for all k ∈ N, the derivative of order k of f at point 0 is zero. So, if we assume

that f is developable in a power series, its development is the zero series, which is

impossible since f (x) , 0, for all x ∈ ]−R,R[ .

1.4.3 Sufficient condition for development in power

series

Theorem 1.4.2. Let f be an indefinitely derivable function on an interval ]− r,+r[.

A sufficient condition for f to be developable in a power series is the following:

∃M > 0, ∀n ∈N,∀x ∈] − r,+r[,
∣∣∣ f (n)(x)

∣∣∣ ≤M. (1.37)

In addition, for all x ∈] − r,+r[, we have:

f (x) =

+∞∑
n≥0

f (n)(0)
n!

xn. (1.38)
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Proof. Since f is indefinitely derivable on ]−r,+r[, the formula of Mac-Laurin

gives:

f (x) =

n∑
k=0

f (k)(0)
n!

xk +
xn+1

(+1)!
f (n+1)(θx), θ ∈ ]0, 1[ . (1.39)

It is enough to show that limn→+∞
xn+1

(+1)!
f (n+1)(θx) = 0. Indeed, by hypothesis,

we can write:

0 ≤

∣∣∣∣∣∣ xn+1

(+1)!
f (n+1)(θx)

∣∣∣∣∣∣ ≤M

∣∣∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣∣∣ . (1.40)

Since
xn+1

(n + 1)!
is the general term of a convergent series, we therefore have:

lim
n→+∞

xn+1

(n + 1)!
= 0. (1.41)

Consequently:

lim
n→+∞

xn+1

(+1)!
f (n+1)(θx) = 0. (1.42)

The function f is indeed the sum of its Taylor series on ] − r,+r[. �

1.5 Development in power series of usual

functions

1.5.1 The sine and cosine functions

These two functions are of class C+∞ on R. By recurrence, we can easily

verify that their n th derivatives are:

sin(n)(x) = sin(x + n
π
2

) (1.43)

cos(n)(x) = cos(x + n
π
2

), (1.44)

are indeed majored by M = 1, for all x ∈ R. They are therefore developable

in power series on R, which means that R = +∞. We therefore have:

sin(x) =
∑
n≥0

(−1)n

(2n + 1)!
x2n+1, for all x ∈ R. (1.45)

cos(x) =
∑
n≥0

(−1)n

(2n)!
x2n, for all x ∈ R. (1.46)
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1.5.2 The exponential function x 7→ exp(x)

This function is of class C+∞ on any interval ]−r, r[ . By recurrence, we can

easily verify that its n th derivative is also equal to exp(x), and is well

bounded above exp(r). It is therefore developable in a power series on any

interval ]−r, r[. Since r is arbitrary, we deduce that R = +∞. We therefore

have:

exp(x) =
∑
n≥0

xn

n!
, for all x ∈ R. (1.47)

1.5.3 The logarithm function x 7→ ln(1 − x)

The function x 7→
1

1 − x
is developable in a power series on ]−1, 1[ . Indeed,

let (xn)n∈N be a geometric sequence, we can write:

1
1 − x

=

n∑
k=0

xk +
xn+1

1 − x
, x ∈ R/ {1} . (1.48)

We deduce that:
1

1 − x
=

∑
n≥0

xn, x ∈ ]−1, 1[ . (1.49)

Integrating term by term, we obtain:

ln(1 − x) = −
∑
n≥0

xn+1

n + 1
, x ∈ [−1, 1[ (because

∑
n≥0

(−1)n+1

n + 1
converges). (1.50)

Remak 1.2. The techniques of the previous parts can be applied to obtain other

developments from these cases. These techniques are adapted to the following func-

tions:

cosh(x) =
exp(x) + exp(−x)

2
=

∑
n≥0

x2n

(2n)!
, x ∈ R. (1.51)

sinh(x) =
exp(x) − exp(−x)

2
=

∑
n≥0

x2n+1

(2n + 1)!
, x ∈ R. (1.52)

1
ax + b

=
1
b

1

1 − (−
a
b

x)
=

1
b

∑
n≥0

(−1)n(
a
b

)nxn, x ∈
]
−

∣∣∣∣∣ba
∣∣∣∣∣ , ∣∣∣∣∣ba

∣∣∣∣∣[ and a, b , 0. (1.53)

1
1 + x2 =

1
1 + (−x2)

=
∑
n≥0

(−1)nx2n, x ∈ ]−1, 1[ . (1.54)
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arctan(x) =

∫ x

0

dt
1 + t2 =

∑
n≥0

(−1)nx2n+1

2n + 1
, x ∈ [−1, 1] . (1.55)

arg th(x) =
1
2

ln(
1 + x
1 − x

) =
∑
n≥0

x2n+1

2n + 1
, x ∈ [−1, 1[ . (1.56)

1.5.4 Rational functions

The decomposition of a rational function into simple elements and the use

of the power series development of the function x 7→ f (x) =
1

1 − x
, allow us

to develop a rational function in a power series.

Example 1.5.1. We consider the rational function f (x) =
1

2 − x
.

We then have

f (x) = −
1
2
×

1
1 − x

2
= −

1
2

∑
n≥0

(x
2

)n
, x ∈ ]−2, 2[ . (1.57)

1.6 Application to the resolution of cer-

tain differential equations

We will present here an example of a differential equation, a method that

allows us to find a solution in the form of a function that can be developed

in a power series over a certain interval ]−r, r[ .

Let us then consider the differential equation:

2xẏ + y −
1

1 − x
= 0. (1.58)

Suppose there exists a power series y(x) =
∑

n≥0 anxn with radius of conver-

gence r > 0.

For all x ∈ ]−1, 1[,
1

1 − x
= 1 +

∑
n≥1

xn. (1.59)

So, we have:

2xẏ + y −
1

1 − x
= a0 +

∑
n≥0

(2n + 1)anxn
−

1 +
∑
n≥1

xn

 = 0. (1.60)
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We deduce that:

a0 = 1 and an =
1

2n + 1
. (1.61)

Therefore:

y(x) =
∑
n≥0

xn

2n + 1
, ]−1, 1[ (1.62)
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