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Chapter 1

Power series

In this chapter, we will study a power series which are special forms of the
series of functions of real or complex variables. For this, x denotes a real

variable and z a complex variable.

1.1 Real (or complex) power series

Definition 1.1.1. A real (resp. complex) power series is any series of functions

whose general term:
fu¥) = anx", (1.1)

where ap, ai, ..., Ay, ... are real numbers and x € R (resp.
— n
fa(x) = anz", (1.2)
where ag, a1, ..., Ay, ... are complex numbers and z € C.)

To unify the presentation of the following results, we consider the case

where x € R.

Lemma 1.1.1. (Abel’s Lemma) If the power series ), a,x"* converges at the point

xo # 0, then it converges absolutely for all x € R, such that |x| < xo.
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Proof. Since the power series )’ a,x; converges, its general term is bounded,

there then exists M > 0, such that:

foralln € N,

x| < M. (1.3)

For all x € R, such that |x| < xp, we thus have:

x n
la.x" = |a,,xg) X |—
X0
n
x
< M|—|, (1.4)
Xo
x| x
and ‘x_' is the general term of a convergent geometric series ( 1< 1); we
0
deduce that the series }’ a,x" converges absolutely. m]

1.1.1 Radius of convergence of a power series

Theorem 1.1.1. (theorem and definition) If a power series ), a,x" converges to the
point xo # 0, then there exists a unique element R € Ry U {+oo} verifying the
following two conditions:

1. Forall x € R, such that |x| < R, the power series ) a,x" absolutely converges .
2. Forall x € R, such that |x| > R, the power series ), a,x" diverges.

The number R is called the radius of convergence of the series, and the set ]-R, R[

is called the interval( or domain) of convergence.

Proof. Suppose that there exists at least one real xy # 0, such that the series
Y a,x; converges and one real x; such that the series Y, ax} diverges.

Since absolute convergence on [0, R[ implies convergence on |-R,0], and
divergence on |R, +oo[ implies divergence on |-oo, —R[, we will study the
nature of ) a,x" on R,.

Let us then consider the set D of positive reals defined by:
D= {x eR,, Z a,x"’ converge.} (1.5)

Since the series ) a,x; converges, D is therefore non-empty.
According to the relation (1.5), the set D is majorized, it therefore admits a

non-zero upper bound R = sup, . D.
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1. Prove that for all x € R;, such that x < R, the power seires ), a,x"
converges absolutely.

The second property of the upper bound states that there exists r = xg
between x and R, such that ), a,x" converges at the point xo, so according to
Abel, it is absolutely convergent for all x € R, such that x < xo.

2. Let us now show that for all x € R,, such that x > R, the power series

Y. a,x" diverges.

R+x

2
Since 0 < y < x, Abel’s lemma states that the series }_ a,y" converges, y is

Suppose by contradiction that )’ a,x" converges, and consider y =

therefore a point of convergence, that is y € D. Consequently y < R, and

x .
> R, and the series ) a,x"

this is false, because by construction y =

diverges. O

1.1.2 Cauchy-Hadamard rule

Theorem 1.1.2. The radius of convergence of a power series ), a,x" is given by:
-1
R = lir+n ( |un|) ( when this limit exists ). (1.6)
n—+0oo

Proof. Tt suffices to apply the Cauchy criterion on the series of functions
2 layx"| m|

n+1

n? . n
X
n)

Example 1.1.1. The power series Y51 (

1.1.3 D’Alembert’s rule

Theorem 1.1.3. The radius of convergence of a power series Y, a,x" is given by:

An+1
an

-1
R = lim ( ) ( when this limit exists ). (1.7)

n—+oo

Proof. Tt suffices to apply D’Alembert’s criterion on the series of functions

2 lanx"| O

) n! .
Example 1.1.2. The power series ),,sq Ex” has for the radius of convergence
R=e
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1.1.4 Normal convergence (Weierstrass rule)

Theorem 1.1.4. Any power series Y., a,x" converges normally in any compact

contained in the domain of convergence ]-R, R[ (R > 0).

Proof. Let[-a,a] € ]-R,R[ (a > 0). In the segment [-a, o], the series )} a,x"
is bounded above in absolute value by the positive series }’, |a,| a”, which is

convergent, the series }} a,x" is therefore normally convergent. ]

1.2 Properties of power series

1.2.1 Continuity of the sum of a power series

Theorem 1.2.1. Let ), a,x" be a power series with a non-zero radius of convergence
R; then the sum S of the series ) a,x" is a continuous function on any compact set

contained in the domain of convergence ]-R, R[.

Proof. For all n € IN, each function f,(x) = a"x" is continuous on [—a, a] of
]-R, R[ and the series }’ a,x" converges uniformly on [-a, a] . By the property
of the continuity of series of functions, the sum of the power series ), a,x" is

a continuous function. O

Theorem 1.2.2. (Abel’s theorem) Let } a,x" be a power series with radius of
convergence R # 0. If this series converges for x = R (resp. for x = —R), then this
series is uniformly convergent on [0,R] (resp. on [-R,0] ) and the sum S of this

series is continuous to the left of x = R (resp. to the right of x = —R), that is:

lim ) a0 = Z a,R" = S(R), (1.8)
(resp.
lim Y e = Zan(—l)”R” = S(-R). (1.9)

Proof. We demonstrate this in the case where the series converges for x = R.

Consider the new power series )., 2,R"y" of the variable y € [0, 1].
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For y = 1, the series becomes },.,4,R", which is convergent, so it is uni-
formly convergent.
Let us now assume that y € [0, 1[. We use the Abel transformation, we can

write:

Z a,R"y" = 2 (a0 + R + ... + a,R") (y” - y””) (1.10)

n>0 n>0

Let
00 = o R+ R (3 - ).

We just need to show that this series is uniformly convergent.
Indeed:

|(ﬂo +aR + ... +a,R") (y" _ yn+1)
M(y" =y, @11)

|gn(]/)|

IA

because y" — y"*! > 0 ((y") is decreasing) and the sequence of general term
Yi_o axRF is bounded.
For all y € [0,1], the sequence of general term y" converges uniformly

to 0, hence according to the telescopic property, the series Z (" -y
nx1
is uniformly convergent. The comparison theorem therefore asserts the

+00

uniform convergence of the series } g,. It follows that the initial series
n>0

+00

Y. 4,R"y" is uniformly convergent on [0, 1] .
n>0
+00

We then deduce the uniform convergence of }; a,R"y" on [0, 1].
n>0
Since each function a,R"y" is continuous on [0, 1], it results in the continuity

of the sum of this series on [0, 1], and moreover:

i S(yR), if 0,1
Y arry =] SO0 el (112)
Yous0dR", ify=1.

The continuity on the left at y = 1 then gives us:

lim S(yR) = S(R) = Z a,R" (1.13)

n>0
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1.2.2 Derivability of power series

+00

Theorem 1.2.3. Let ), a,x" be a power series of non-zero radius of convergence R,
n>0

then its sum S is a function derivable on any compact [a, b] contained in the domain

of convergence 1-R, R, and for any x € [a, b], we have:

a +00 +00 a +00
S(x) = =— Zanx” = Z — (a,x") = Z na,x" L. (1.14)
ox ox
n>0 n>0 n>1
+o00
Proof. Tt suffices to show that the power series ) a,x" and its derivative
n>0
+00
series ), na,x" have the same radius of convergence R; then the theorem
n>1

of derivation of series of functions applies since a power series converges
uniformly on any compact contained in the domain of convergence. Indeed,
let R be the radius of convergence of the series } (1 + 1)a,41x".

1. If |x| < R, the series ) (1 + 1)a,.1x" is convergent.

Since:

|12 < |1+ D x™ = 004+ 1) x| ], (1.15)

the series Y |a,,+x”+1| is convergent, the series Y. a,,,1x"*1( or simply Y’ a,x")
is therefore convergent.

2. If |x| > R, the series } (1 + 1)a,.1x" is divergent. Let y = R+T|x| € IR, |x][,
the series Y (1 + 1)a,+1y" diverges and its general term is not bounded.

We can write:

1 (|«
1| _
|an+1x”+ | = |(n + 1)an+1y"| P (?) . (1.16)
|x] I\
Since — > 1, limyHm # ;) = 409, SO limnHJroo |an+1xn+1| +0.
The series Y. a,,+1x""( or simply Y a,x") is therefore divergent. o

+00

Corollary 1.2.1. Let Y a,x" be a power series of non-zero radius of convergence
n>0

R, then its sum S is an infinitely derivable function on any compact contained in

the domain of convergence |—R, R[, and for any x € 1-R, R[ and k > 1 we have:

S®(x) = Z(n + R+ k= 1) (11 + Datpag™ 1.17)

n>0
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+00

Proof. Tt suffices to show by recurrence that the series ), (n+k)(n+k—1)...(n+
n>0

Dayx", k =1,2,.... have the same radius of convergence R. O

1.2.3 Integration of a power series

+00

Theorem 1.2.4. Any power series ), a,x" is term by term integrable on any
n=0

compact contained in the domain of convergence ]-R, R[ . In particular, its sum S

verifies:
X i n+1
X
S(t)dx = — 1l -R,R[. 1.18
fo (f)dx rgsannJrlfora x €] [ (1.18)
+00
Proof. Let x € ]-R, R[. Since the power series }, a,x" converges uniformly

n>0
on [0,x], the sum S is then a continuous function, and therefore integrable

on [0, x]. The Equ. (1.18) is therefore well defined. Moreover, if we derivate

the series (1.18), we find:

+00

S(x) =) ayx", forall x € ]-R, R[. (1.19)
n=0
+00 +00
The two power series Y a,x" and ), na,x" then have the same convergence
n=0 n>1
radius R . O

Example 1.2.1. Consider the power series of general term:
le
a,x" = o n >1. (1.20)

The d’Alembert criterion shows that this series is absolutely convergent on ]-1,1[
and has the sum S.

+00
Forall x € -1, 1], the series Y, a,x" is derivable term by term. We then have:
n>1

+00

S(x) = Zx” = 1%( forall x € 1-1,1[. 1.21)

n>0

S is continuous on [0, x], so it is integrable on this interval. We then have:

S(x) = —In(1 - x). (1.22)
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+00 _1 n
On the other hand, if x = —1, the numerical series }, converges, we can then
n>1
apply Abel’s theorem 1.2.2, we deduce that:
+00 _1\n
Z D o (1.23)
n>1 n

1.3 Sums and products of power series

1.3.1 Sum of two power series

Let ). a,x" and }, b,x" be two power series with radius of convergence R,

and R, respectively, we then have:

Proposition 1.3.1. The radius of convergence R of the power series }.(a, + b,)x"

verifies:

v

inf(R,, Ry), if Ry = Ry (1.24)

irlf(I{Ll/ Rb)/ ZfRﬂ i Rb
Moreover, for all |x| < inf(R,, Rp), we have:

Z(an +b,)x" = Z axt + Z b,x". (1.25)

Proof. 1. When |x| < inf(R,, Rp), the two series )" a,x" and ) b,x" are conver-

gent, the series ) (a, + b,)x" is therefore convergent, we deduce that:
R > inf(R,, Ry). (1.26)

Let R, # Rp. Suppose for example that R, < Rp, and let x € R, such that
R, < |x| < Ry, the series ), a,x" is therefore divergent while the series } b, x"

is convergent. The series },(a, + b,)x" is then divergent, and moreover:
R < R, =inf(R;, Rp). (1.27)

From (1.26) and (1.27), we deduce that R = inf(R,, Rp).

2. If R, = Ry, we cannot conclude anything about the radius of convergence
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of the series Y (a, + b,)x".

n
L) x" have
n+1

the same radius of convergence R, = R, = e, while the sum series is the series

n
As an example, the two power series } (#) x"and -}, (

with a zero general term, and therefore R = +co. O

1.3.2 Product of two power series

Proposition 1.3.2. The radius of convergence R of the series with general term:

Xt = (Z akbn_k] x" (1.28)

k=0
verifies R > inf(R,, Ry). In addition, for all |x| < inf(R,, Rp), we have:
Z Xt = [Z a,,x”] X [Z b,,x”] . (1.29)
n>0 n>0 n=0

Proof. let|x| < inf(R,, Rp). Since the two series (}.,,50 4,x") and (3,5 bnXx") are

absolutely convergent, the Cauchy product series of general term:

Y () (o) = (Z b]

k=0 k=0

is also absolutely convergent, and for all x| < inf(R,, R;), we have:

Z X" = 2 Z (ax") (bn_kx”-k)] = (Z a,,x"] x [Z b,,x”]. (1.30)

n=0 n>0 | k=0 n>0 n>0

O

1.4 Functions developable in a power se-

ries ( Taylor series )

In this section, we will study the problem in reverse.
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1.4.1 Functions developable in a power series

Definition 1.4.1. Let xq be a given real number and let f : R — R be a function
defined in the neighborhood of xo. We say that f is developable in a power series
at the point xy, if there exists a power series Y., a,x" with radius of convergence
R > 0, such that:

forallx e R,|x — x| <R, f(x) = Z a,(x — x0)" (1.31)

n>0

By performing the change of variable X = x — xo, we then speak of a function that

is developable in a power series at the origin.

Definition 1.4.2. A function f of a complex variable z is said to be developable in
a power series at the point zy, if there exists a power series Y., an(z — zo)", with

radius of convergence R > 0, such that:

forallze C,|z—zp| <R, f(z) = Z an(z — zo)". (1.32)

n=0

Definition 1.4.3. If f is indefinitely differentiable, the power series with general
f9)

term i

x" is called Taylor series of f.

1.4.2 Necessary condition for developmentin power
series

Theorem 1.4.1. When a function f is developable in power series, then f is of
class C** on any compact contained in the domain of convergence |-R, R[ and f
coincides with its Taylor series. Moreover, if the power series development exists, it

is unique.

Proof. Suppose that f is developable in a power series at the origin, then
there exists a power series )., 4,x" with a non-zero radius of convergence

R, such that:

forall x € R, x| < R, we have f(x) = Zanx” = 5(x), (1.33)

n>0
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where S is the sum of this series.
According to the theorem of the derivation of power series, we deduce that
f is of class C** on ]-R, R[ and moreover:

+00

F0x) = Z(n + R0+ k= 1) + D (1.34)

n>0

It follows that:

“0)
FO0) = ark!, ie. a = f o (1.35)
which ensures the uniqueness of the development. ]

Remak 1.1. The converse of the previous theorem is false. Indeed, the condition that
f is of class C** on any compact contained in the domain of convergence ]-R, R],
is not sufficient to ensure that this function is developable in a power series, even if
its Taylor series converges. As an example, we consider the function f defined on IR
by:
1. .

exp(—;), ifx>0,
0,ifx <0.

() = (1.36)

By recurrence, we can easily verify that this function is of class C** on R. Moreover
for all k € IN, the derivative of order k of f at point 0 is zero. So, if we assume
that f is developable in a power series, its development is the zero series, which is
impossible since f(x) # 0, for all x € |-R, R[.

1.4.3 Sufficient condition for developmentin power
series

Theorem 1.4.2. Let f be an indefinitely derivable function on an interval 1 —r, ++[.

A sufficient condition for f to be developable in a power series is the following:

AM >0, Yn e N,Vx €] -7, +7], [f"(x)| < M. (1.37)
In addition, for all x €] —r, +r[, we have:
+00 (n)(o)
fx) = Z fo (1.38)

n>0
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Proof. Since f is indefinitely derivable on ] -7, +1{, the formula of Mac-Laurin

gives:
n f(k)(o) ' Peas! 1)
=) —= —f" 1[. 1.
) ; b +1)!f (6x), 0.€10,1] (1.39)
Itis enough to show that limn_>+Do 1! = 0. Indeed, by hypothesis,
we can write:
< (r+1) —|. 4
0 (+1)'f Ox) <M ‘ n+ 1) (140)
n+1
Since CF is the general term of a convergent series, we therefore have:
. xn+1
Consequently:
) xn+1 (1)
The function f is indeed the sum of its Taylor series on ] — 7, +r[. O

1.5 Developmentin power series of usual

functions

1.5.1 The sine and cosine functions

These two functions are of class C** on R. By recurrence, we can easily

verify that their n th derivatives are:
sin®(x) = sin(x + ng) (1.43)
cos™(x) = cos(x+ ng), (1.44)

are indeed majored by M = 1, for all x € R. They are therefore developable

in power series on IR, which means that R = +co. We therefore have:

. 1
sin(x) = 2 (2(n +)1), x*"1, for all x € R. (1.45)
cos(x) = 1" x*", for all x € R. (1.46)

— (2n)!
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1.5.2 The exponential function x — exp(x)

This function is of class C*® on any interval ]-7,r[. By recurrence, we can
easily verify that its n th derivative is also equal to exp(x), and is well
bounded above exp(r). It is therefore developable in a power series on any
interval ]-r,7[. Since r is arbitrary, we deduce that R = +co. We therefore
have:

exp(x) = Z z—’:, for all x € R. (1.47)

n=0

1.5.3 The logarithm function x — In(1 — x)

The function x —

is developable in a power series on ]-1,1[ . Indeed,

let (x"),en be a geometric sequence, we can write:

1 n L xn+1
1_X=§x + o xeR/(1). (1.48)
We deduce that:
- 1 -= Zx”, xel-1,1[. (1.49)
n>0

Integrating term by term, we obtain:

n+1 1 n+1

; _
ln(l—x):—zn+1,

x € [-1,1] (because Z ]

n>0 n>0

converges). (1.50)

Remak 1.2. The techniques of the previous parts can be applied to obtain other

developments from these cases. These techniques are adapted to the following func-

tions: ® ) X
_ exp(x) +exp(—x) x"
cosh(x) = > = Z anl’ xeR. (1.51)
. ex (x) —ex x2n+l
sinh(x) = —P pC Z G FER (1.52)
1 — 1 n,n é
ax+b_b1 —Ex bZ 1)( )ix", xe] a[anda,b#O. (1.53)

1 - - Za(—nnxz", xel-1,1[. (1.54)

1+x2 1+ (—xz)
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X _1\142n+1
arctan(x) = f at = Z %, xe[-1,1]. (1.55)
n>0

o 1+£ 2n+1
1. 1+x K2+l
=-1 = - -1,1[. 1.
arg th(x) 5 n(l—x) nzo 2n+1,X€[ | (1.56)

1.5.4 Rational functions

The decomposition of a rational function into simple elements and the use

1
——, allow us
-x

of the power series development of the function x = f(x) = I

to develop a rational function in a power series.

1
Example 1.5.1. We consider the rational function f(x) = T
We then have
1 1 1 x\"
- _2 =~y (2 -2,2[. 1.57
fO=-3x15="31,(3)  xe122 (157)

n>0

1.6 Application to the resolution of cer-

tain differential equations

We will present here an example of a differential equation, a method that
allows us to find a solution in the form of a function that can be developed
in a power series over a certain interval |-7, 7.

Let us then consider the differential equation:

2xy+y— =0. (1.58)

1-x
Suppose there exists a power series y(x) = )~ a,x" with radius of conver-
gence r > 0.

Forall x € ]-1,1],

LR Zx". (1.59)

So, we have:

2xy+y— 11Tx =ap+ Z(Zn + 1)a,x" - {1 + Z x”] =0. (1.60)

n>0 n>1
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We deduce that:
1

2n+1"

a=1landa, = (1.61)

Therefore:
le
y(x) = Z(; 5o 1L (1.62)
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