Abdelhafid Boussouf University Center - Mila

Institute of Science & Technology
Department of Process Engineering

Chemical Engineering – M1

Unit Operations I – UEF 1.1.1

Academic year: 2025-2026

Instructor: Dr. M. Bouti

In-Class Exercises n° 03 (Distillation – Binary distillation: Mc-Cabe–Thiele method)

Exercise 01:

A continuous binary distillation separates component A (more volatile) from component B (less volatile). Feed and product data:

- Feed flow: **F** = **100 kmol/h** (molar basis; value used only for flow-rates if needed)
- Feed composition (mole fraction A): $x_F = 0.50$
- Desired distillate composition: $x_F = 0.95$
- Desired bottoms composition: $x_F = 0.05$
- Relative volatility (assumed constant): $\alpha = 2.0$
- Feed condition: saturated liquid (so q = 1)
- Assume ideal stages and constant molar flows (no significant heats of mixing, constant molar overflow applies)

Using the McCabe—Thiele graphical method:

- Construct the equilibrium curve $y = \frac{\alpha x}{1 + (\alpha 1)x}$ and the 45° line.
- Draw the q-line.
- Obetermine the minimum reflux ratio R_{min} .
- O Pick a practical reflux ratio $R = 1.5R_{min}$. For the R: draw the rectifying and stripping operating lines, locate the feed stage intersection, and use the step-off construction to determine the number of theoretical stages (including the reboiler as one stage if you treat the reboiler as a stage).
- o Report the number of theoretical stages and the feed stage location (counting stages from the top).

Exercise 02:

A saturated liquid mixture containing **60 mole** % benzene and **40 mole** % toluene is to be distilled continuously into a distillate product containing **90 mole** % benzene and the bottom product containing **5 mole** % benzene. The fractional distillation column will operate at approximately constant pressure of 1 atm. The **reflux ratio** is **2**. How many theoretical plates must the column have if the feed is introduced into the eighth plate?

Data:
$$z_F = 0.6$$
; $x_D = 0.9$; $x_W = 0.05$; $R = 2$.

Feed is saturated liquid

Abdelhafid Boussouf University Center - Mila

Institute of Science & Technology Department of Process Engineering

Chemical Engineering – M1

Unit Operations I – UEF 1.1.1

Academic year: 2025-2026 Instructor: Dr. M. Bouti

Equilibrium data are:

X	0	0.017	0.075	0.13	0.211	0.288	0.37	0.411	0.581	0.78	1
у	0	0.039	0.161	0.261	0.393	0.496	0.591	0.632	0.777	0.9	1

Exercise 03:

A liquid mixture of methanol-water is to be distilled in a plate tower. The feed of **200 kmol/h** is liquid and contains **48% mol** of methanol. It is desired to obtain a distilled product that contains **90% mol** of methanol and a bottom product that only contains **5% mol** of methanol. It is fed at the same amount of liquid and vapor.

- a) Calculate the minimum reflux.
- b) Calculate the number of stages required if 1.5 times the minimum reflux is used.
- c) Identify at which stage (dish) you should be fed.

х	0.079	0.17	0.28	0.40	0.56	0.75	1
у	0.23	0.43	0.59	0.72	0.83	0.92	1

Exercise 04:

550 kmol/h of a binary mixture water/acetic acid (70 mol% water) is separated by distillation in a bottom fraction with 98 mol% acetic acid and a distillate containing 5 mol% acetic acid. The relative volatily of water over acetic acid is 1.85

- a) Calculate the amount of distillate and bottom product this distillation yields?
- b) Determine graphically the minimum number of stages.

The external reflux ratio R = L'/D is set at 3. The boilup ratio in the stripping section (= V''/B), is set to 10.

- c) Determine graphically the required number of equilibrium stages under these conditions.
- d) Determine graphically the optimal location for the feed stage.
- e) Determine graphically the slope of the feed line and from that the vapor fraction in the feed.