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Chapter 3: Damped Free Systems with One Degree of Freedom 

 

Damped free vibrations are vibrations that occur after an initial disturbance, where the 

amplitude decreases over time until the motion eventually stops. The decrease in amplitude is 

due to the loss of energy caused by frictional forces. The friction is viscous and depends on 

the velocity. 

f=-cv 

where :  

C : damping coefficient  

V : velocity 

Lagrange’s Equation for a Damped System 

In the case of a damped system, there exists a frictional force of the form 

f =-c𝑞̇ 

and the energy loss is defined by the dissipation function:  

𝐷 = 
𝟏

𝟐
 𝑐𝑞̇ 2 

The equation of motion for a damped free system is therefore : 

𝐝

𝐝𝐭
 (
𝛛𝐋

𝛛𝐪̇ 
 ) − 

𝛛𝐋

𝛛𝐪̇
 + 

𝛛𝐃

𝛛𝐪̇ 
 = 0   

The dissipation function is defined as: 

 𝐷 = 
1

2 
 𝛼𝑞 ̇ 2 ⟹ 

∂D

∂q 
  = 𝛼𝑞̇  

The differential equation of motion takes the form:  

𝑞 ̈+ 2𝛿𝑞̇ + 0 2𝑞 = 0 

where :  

 is the damping coefficient.  
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0 is the undamped natural angular frequency.. 

Example: In the case of a mass–spring system, we have: 

The kinetic energy of the mass: 𝑇 =
1

2
𝑚𝑥̇ 2 

 

The potential energy of the spring: U=
1

2
 𝑘𝑥2  

The dissipation fonction  𝐷 = 
1

2 
 𝛼𝑞̇ 2 

Therfore : 

 𝑑/𝑑𝑡 (𝜕𝐿/𝜕𝑥̇ ) = 𝑚𝑥̈  and  𝜕𝐿/𝜕𝑥 = 𝑘𝑥 and  𝜕𝐷/𝜕𝑥̇ = 𝛼𝑥̇  

The equation of motion is then :   𝑚𝑥̈+ 𝑘𝑥 + 𝛼𝑥̇ = 0 ⇒  

                                                       𝑥 ̈+ 
α 

m
 𝑥̇ + 

k

m
 𝑥 = 0  

This is a second-order linear differential equation. 

More generally, for a generalized coordinate q, it can be written as: 

 
𝐝

𝐝𝐭
 (
𝛛𝐋

𝛛𝐪̇ 
 ) − 

𝛛𝐋

𝛛𝐪̇
 + 

𝛛𝐃

𝛛𝐪̇ 
 = 0   

Solution of the Differential Equation 

The second-order linear differential equation: 

𝑞 ̈+ 2𝛿𝑞̇ + 𝜔0
2𝑞 = 0 

has the following characteristic equation: 

𝜆2 + 2𝛿𝜆 + 𝜔0
2 = 0 

Depending on the nature of the roots of this characteristic equation, there are three types of 

damping: 

𝛥 ̀< 0 ⇒ δ2−ω0
2<0   Weakly damped regime.  

𝛥 ̀=0⇒ 𝛿2 − 𝜔0
2 = 0   Critical damping regime.  
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𝛥 ̀>0⇒ 𝛿2 − 𝜔0
2 > 0    Strongly damped or aperiodic regime. 

The motion is aperiodic (overdamped) when  0, and the solution is of the form: 

 

A1 and A2 are integration constants determined by the initial conditions. 

Figure II-2 shows the solution q(t) as a function of time in the particular case where: 

q(0)=q0 and  𝑞 (0) =0. In this case, the solution q(t) decreases exponentially toward zero,

 

Fig. III-1. Variation of q(t) as a function of time for the overdamped regime. 

When δ=ω0, the system is in the critically damped regime (see Figure II-3), and the solution 

takes the form: 

q(𝑡) = (𝐴1 + 𝐴2𝑡)−𝛿𝑡 

In this case, the motion returns to equilibrium as quickly as possible without oscillating. The 

displacement q(t) decreases monotonically toward zero, and the system does not overshoot its 

equilibrium position. 

The constants A1 and A2 are determined by the initial conditions q(0) and q˙(0). 
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Fig. III-2. Variation of q(t) as a function of time for the critically damped regime. 

When δ<ω0, the system is in the underdamped (pseudoperiodic) regime (see Figure III-3), 

and the solution takes the form: 

q(𝑡) = 𝐴𝑒−𝛿𝑡𝑐𝑜(a𝑡 + 𝜑)  

 A and φ are integration constants determined from the initial conditions. 

ωa\omega_aωa is the damped (pseudo) angular frequency, defined by: 

                                                             

 a =  

Figure III-3 illustrates the variation of q(t) as a function of time. It can be observed that q(t) 

is enveloped by two exponential functions. The locations of the maxima are obtained by 

solving: 

 𝑞 (𝑡) =0. The maxima of q(t) are separated by regular intervals equal to Ta. 

Ta is called the pseudo-period. It can be noted that the amplitude of the oscillations decreases 

over time, and one of the effects of damping is an increase in the oscillation period. 

For lightly damped systems (δ << 0), we can approximate:  

a0 

and the pseudo-period is almost equal to the natural period: 

TaT0 = 2𝜋/0. 
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Fig. III-3. Variation of q(t)q(t)q(t) as a function of time for the lightly damped 

(underdamped) regime. 

- Critical damping coefficient 

Cc is the value of the damping coefficient C corresponding to Δ=0, that is: 

 ( 
Cc

m
 ) 2 = 4 𝑘 𝑚 ⇒ 

Cc = 2m√
𝐤

𝐦
 =   2mω0 

This is the minimum damping required for the system to return to equilibrium without 

oscillating. 

- Damping ratio 

The damping ratio is defined as: 

                                                ξ= 
𝐜

𝐂𝐜
 ⇒ 

𝐂

𝟐𝐦
  = 𝜀ω0 

                                                ⇒ ξ = 
𝐂

𝟐𝐦𝛚𝟎
 

The damping ratio ζ characterizes the type of damping in the system: 

 ζ=0: undamped 

 0<ζ<1: underdamped (pseudoperiodic) 

 ζ=1: critically damped 

 ζ>1: overdamped (aperiodic) 
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- Quality factor 

The quality factor is defined as: 

𝑸 = 𝟐𝝅
𝐄

∆𝐄 
 = 𝛚𝟎 𝟐𝜹  

where: 

 E is the energy of the harmonic oscillator, 

 ΔE is the energy dissipated during one cycle, 

 ω0 is the undamped natural angular frequency, 

 δ  is the damping coefficient. 

The smaller the damping, the higher the quality of the system. A high Q indicates that the 

system oscillates for a long time before its energy is significantly dissipated. 

- Logarithmic decrement (D) 

Figure II-4 illustrates the definition of the logarithmic decrement. It is defined as the natural 

logarithm of the ratio of two successive amplitudes of the damped oscillations: 

𝐷 = 𝑙𝑛
A(t1) 

A(t2)
 = 𝑙𝑛

A(t1)

A(t1+Ta)
 = −𝑙𝑛

A(t1+Ta) 

A(t1)
  

By substituting the expressions for the amplitudes, we obtain: 

𝐷 = 𝛿𝑇𝑎  

where: 

 δ is the damping coefficient, 

 Ta is the pseudo-period, given by:             𝑇𝑎 = 2𝜋/a  

and ωa is the damped (pseudo) angular frequency, defined as: 

 a = √02 −  δ 2 

This shows that the logarithmic decrement is directly proportional to the damping coefficient 

and the pseudo-period of the system. 
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Fig. III-4. Definition of the logarithmic decrement 

 

 Exercise 

A mass m is welded to the end of a rod of length l and 

negligible mass (Figure III-5). The other end of the 

rod is hinged at point O. The rod is connected at point 

A to a frame (B1) by a spring of stiffness k1. At point 

B, the rod is connected to another frame (B2) by a 

spring of stiffness k2. The mass m is connected to 

frame B2 by a damper with damping coefficient α. 

The distances are OA=l/3 and OB=2l/3. 

Tasks: 

1. Find the differential equation of motion. 

2. Determine the solution of the differential equation in the case of light damping, 

including: 

o the damping coefficient, 

o the natural frequency, 

o and the damped (pseudo) frequency. 
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