Centre universitaire Abdalhafid Boussouf Mila

Institut des Sciences et Technologie

Module : Équations différentielles 3^{ème} année Maths, 2025-2026

TD 1 : Equations différentielles du premier ordre

Exercice 1

Soit l'E.D suivante

$$y' + ay = C(t) \tag{1}$$

et soit y_0 une solution de (1). Montrer que :

- 1. Si z est une solution de l'équation homogène associée à (1), alors $y_0 + z$ solution de l'équation (1).
- 2. Si y est une solution de l'équation (1), alors $y-y_0$ solution de l'équation homogène associée.

Exercice 2

Montrer que : Si y_1 est une solution particulière d'une équation linéaire avec second membre b_1 et y_2 une solution particulière de la même équation avec le second membre b_2 , alors $y_1 + y_2$ est une solution particulière de l'équation avec le second membre $b_1 + b_2$.

Exercice 3

Résoudre les équations différentielles suivantes :

1.

$$y' = \sqrt{y}$$
, $y'(a^2 - t^2)^2 + 4aty^2 = 0$, $y^2dt + tg(t)dy = 0$ (*).

2.

$$y' = \frac{t+y}{t-y},$$
 $tyy' - 2y^2 + 4t^2 = 0.$

Exercice 4

1. Résoudre les équations différentielles linéaires suivantes :

a)
$$y' = y + t$$
, b) $t(t^2 - 1)y' + 2y = t^2$

2. Résoudre les équations suivantes :

a)
$$y' - \frac{y}{2t} = 5t^2y^2$$
, b) $y' - \frac{2}{1-t}y = \frac{\sqrt{y}}{\sqrt{1-t^2}}$ (*), c) $2t^2y' = (t-1)(y^2-t^2) + 2ty$ avec $y = t$.

Exercice 5

Pour chacun des problèmes des Cauchy suivants, justifier l'existence d'une unique solution locale et calculer la solution

(a)
$$\begin{cases} y' = 4 + y \\ y(0) = 1 \end{cases}$$
, (b)
$$\begin{cases} y' = y^{\frac{8}{3}} \\ y(0) = 1 \end{cases}$$

Exercice 6

1. Montrer que le problème de Cauchy :

$$\begin{cases} y'(t) = 3y(t)^{\frac{2}{3}} \\ y(0) = 0, \end{cases}$$

admet une infinité de solutions.

2. Pourquoi il n'y a pas unicit é de la solution?. Et si l'on choisit une condition initiale $y_0 \neq 0$?.

Exercice 7

Résoudre les problèmes de Cauchy suivants :

(a)
$$\begin{cases} y' = -5y + 3 \\ y(0) = 0 \end{cases}$$
, (b)
$$\begin{cases} y' = y + y^2 \\ y(0) = 1 \end{cases}$$

R de la matière : S. Bourourou