Ministry of Higher Education and Scientific Research
University of Abdelhafid Boussouf - Mila

Institute of Mathematics and Computer Science
Department of Computer Science

Master 2 12A — Big Data

2025/2026

Directed Works TD 3 — Working with RDDs and Transformations in Apache Spark

Introduction — Reminder
Apache Spark is a distributed computing framework that processes data in memory. It uses a Directed Acyclic
Graph (DAG) to represent all transformations before execution.

Question 1: Explain in your own words what lazy evaluation means in Spark:
Question 2: Fill in the blanks:

In Spark, transformations are (they don’t execute immediately), while actions are
(they trigger the execution).

Creating RDDs
Spark can create RDDs from existing collections or external datasets.

Example:

data = [10, 20, 30, 40]
rdd = spark.sparkContext.parallelize(data)

Question 3: If we execute the line rdd.count(), what happens internally?

a. Spark immediately creates all partitions.
b. Spark builds a DAG and executes it because count() is an action.
c. Spark executes line by line without optimization.

Transformations
Transformations are operations applied on RDDs that create new RDDs. They are lazy, meaning they only define
the lineage of operations.

Transformation Description Example

map() Applies a function to each element rdd.map(lambda x: x*2)

filter() Keeps elements that satisfy a condition rdd.filter(lambda x: x > 20)
flatMap() Similar to map but can return multiple results per input  rdd.flatMap(lambda x: x.split(" "))
reduceByKey() Merges values with the same key rdd.reduceByKey(lambda a,b: a+b)
Question 4: Complete the following sentence:

map() always produces output element(s) per input, while flatMap() can produce

Actions

Actions trigger the actual execution of the DAG.

Examples:
e collect() : returns all elements to the driver
e count() : returns number of elements
e first() : returns the first element
e take(n) : returns the first n elements




o saveAsTextFile(path) : saves results to storage
Question 5: When would you not use collect()?

Mini-Exercise :

We have a dataset representing student grades:

Student | Subject | Grade

Ali Math 15

Sarah Physics | 17

Ali Physics | 13

John Math 12

Sarah Math 14

We represent this as:

grades = [

"Ali", "Math", 15),
"Sarah", "Physics", 17),
"Ali", "Physics", 13),
"John", "Math", 12),
"Sarah", "Math", 14)

N AN AN~

]

Tasks (conceptual):

a. Create an RDD from the list above: rdd = spark.sparkContext.parallelize(grades)
b. Transform the RDD to get (student, grade) pairs
c. Use reduceByKey() to compute the average grade per student (conceptually).

Question 6: If one node fails during computation, how does Spark recover the missing data?

Reflection

Question 7: Explain the difference between RDD persistence and re-computation:

Optional Challenge
Given the RDD:
data = ["big data", "spark data", "big analytics", "data processing"]

Write the sequence of transformations (in plain text, not code) that counts the frequency of each word.




