Tutorial N°01

Activity 1:

- A/ How many molecules are there in 18 g of water (H_2O) ?
- B/ A sample contains 1.204×10^{24} molecules of oxygen gas (O2). How many moles of O2 is this?
- C/ Find the molar mass of each of the following compounds: Aspartame ($C_{14}H_{18}N_2O_5$), calcium phosphate $Ca_3(PO_4)_2$.
- D/ 'Borax' is the common name of sodium tetraborate, $Na_2B_4O_7$. How many moles, and how many grams of boron are present in 20.0g of Borax?
- E/ The plant photosynthetic pigment chlorophyll contains 2.68 percent magnesium by weight. How many atoms of Mg will there be in 1.00g of chlorophyll?
- F/ Methanol, CH_3OH , is a liquid having a density of 0.79g per millilitre. Calculate the molar volume of methanol.
- G/ How many liters of oxygen gas are in 3 moles of air at STP?
- $\rm H/$ Determine the mass of a sodium atom (Na) knowing that its atomic molar mass is 23 $\rm g/mol$.

Activity 2:

We weigh 10g of NaCl using a balance.

- 1/ How many moles of NaCl are contained in the weighed mass?
- 2/ The 10 g of NaCl are placed in a 250 mL flask. What is the molar concentration of the solution? We give M_{Na} = 23 g/mol, M_{Cl} = 35,5g/mol.

Activity 3:

A gas mixture consists of 0.2 g of H_2 ; 0.21 g of N_2 and 0.51 g of NH_3 under the pressure of one atmosphere and at a temperature of 27 °C. Calculate the mole fractions.

Activity 4:

Artificial sweeteners like aspartame are used to replace sugar in many diet drinks. The molecular formula of aspartame is $C_{14}H_{18}N_2O_5$. A factory uses 2.5 × $10^2\Box$ molecules of aspartame to produce 50,000 cans of diet soda.

- 1/ Calculate the molar mass of aspartame.
- 2/ Determine the mass of aspartame used for 50,000 cans.
- 3/ How much aspartame (in mg) is contained in one can?

Activity 5:

In 50 mL of silver nitrate solution with a concentration of 1.0 mol/L, 0.43 g of copper turnings is introduced according to the following equation:

$$Cu_{(s)} + Ag_{(l)}^+ \rightarrow Cu_{(l)}^{2+} + Ag_{(s)}$$

- 1/ Balance the equation
- 2/ Determine the limiting reactant and the excess reactant.
- 3/ After 10 minutes, the concentration of copper ions is found to be 0.13 mol/L. Calculate the extent of reaction and the conversion rate.
- 4/ Provide the material balance, knowing that the copper has completely disappeared after an hour.

Activity 6:

The combustion reaction of hexane is:

$$2C_6H_{14} + 19O_2 \rightarrow 12CO_2 + 14H_2O$$

1/ What mass of CO_2 is produced when 150.0 g of hexane is burned?

Abdelhafid BOUSSOUF University Center – Mila Mineral Chemistry, 2nd year LMD, Process Engineering

Dr. I. MAYOUF

2/ What mass of $O_2(g)$ is needed to produce 80.0 g of H_2O (1)? 3/ What mass of C_6H_{14} (1) is required to produce 67.2 L of CO_2 (g) at standard temperature and pressure (STP; 1 mol of gas ≈ 22.414 L)? Data: C=12,011g/mol, H=1,008 g/mol, O=15,999 g/mol and $N_A=6.022\times 10^{23}\ mol^{-1}$