
TD Béton Précontraint : Chap 3

Exercice 1:

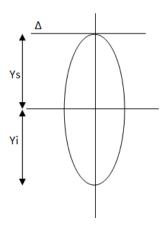
Une poutre simplement appuyée de forme T représentée su la figure ci-dessous, on demande de déterminer les caractéristiques géométriques suivantes :

- 1. L'aire de la section (B)
- 2. Le moment statique (S)
- 3. La distance de la fibre supérieure (y_s) et la distance de la fibre inférieure (y_i)
- 4. Le moment d'inertie (I)
- 5. Le module de résistance (Z)
- 6. Le rayon de giration (i)
- 7. Le rendement de la section (ρ)

Exercice 2:

A. Soit une section avec les caractéristiques suivantes :

Hauteur h =130 cm ; surface A = 0.5 m ; moment statique S_Δ =0.22 m^3 ; moment d'inertie I_Δ = 0.19 $m^4.$


Déterminer les caractéristiques de la section brute :

- 1. Distance de la fibre supérieure y_s [m]
- 2. Distance de la fibre inférieure y_i [m]
- 3. Moment d'inertie par rapport au centre de gravité $I_G\left[m^4\right]$
- 4. Rendement de la section ρ

B. Cette section comporte 6 gaines de 65 mm de diamètre situées respectivement à 110 mm et 320 mm de la fibre inférieure. Le centre de gravité des gaines est à 1.085 m de la fibre supérieure.

Déterminer les caractéristiques de la section nette:

- 1. Aire de la section $B_n[m^2\,]$
- 2. Moment statique $S_{n\Delta}[m^3]$
- 3. Distance de la fibre supérieure y_s [m]
- 4. Distance de la fibre inférieure y_i [m]
- 5. Moment d'inertie par rapport a l'axe « Δ » $I_{n\,\Delta}$ $[m^4]$
- 6. Moment d'inertie par rapport au centre de gravité I_n [m⁴]
- 7. Rendement de la section ρ_n

