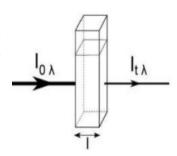
Année Universitaire: 2025-2026

TP n°4

Spectrophotométrie UV-Visible - Dosage du méthyle orange

1. Introduction


La spectrophotométrie d'absorption UV-Visible est une méthode d'analyse couramment utilisée, fondée sur l'absorption d'un rayonnement par une espèce chimique en solution. Elle permet l'identification qualitative (λ_{max}) et la quantification (A= f(C)) des espèces absorbantes dans le domaine 200–800 nm, selon la configuration instrumentale. Cette technique recourt à un spectrophotomètre et à des cuves (généralement de longueur optique l=1,00 cm), et nécessite l'emploi d'un blanc approprié (solvant ou support) comme référence. Elle permet ainsi de caractériser les molécules et de déterminer les concentrations des espèces chimiques en solution.

2. Objectifs

- Connaître la technique de spectrophotométrie.
- Connaître et savoir utiliser la relation entre l'absorbance et la concentration d'une espèce absorbante en solution (loi de Beer Lambert).
- Déterminer à partir d'une courbe d'étalonnage la concentration d'une solution de méthyle orange.

3. Principe

Lorsqu'un faisceau lumineux traverse une solution, certaines longueurs d'onde sont absorbées. L'absorbance $\bf A$ à une longueur d'onde $\bf \lambda$ est reliée à la concentration $\bf C$ de l'espèce absorbante par la loi de Beer-Lambert, dans un domaine où la relation reste linéaire. Le choix d'une longueur d'onde proche de λ_{max} du méthyl orange permet de maximiser la sensibilité et la sélectivité, on retient ici λ = 465 nm (correspondant à la forme neutre ou basique typique), sous réserve du pH et du solvant utilisés.

La mesure de l'absorbance à cette longueur d'onde permet ainsi de déterminer la concentration de la substance absorbante dans la solution.

4. Loi de Beer-Lambert

La loi de Beer-Lambert est :

$$A_{\lambda} = \varepsilon$$
. l. C

Où:

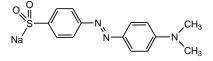
ε: le coefficient d'absorption molaire (L.mol⁻¹.cm⁻¹).

1 : la longueur de la solution traversée par le faisceau (exprimée en cm).

C : la concentration de l'espèce considérée en solution (exprimée en mol. L⁻¹).

Domaine de linéarité

Le graphique représentant l'absorbance en fonction de la concentration, appelé droite d'étalonnage, permet de déterminer la concentration d'une solution inconnue à partir de la mesure de son absorbance. Le coefficient de corrélation, R² ainsi que l'ordonnée à l'origine de la droite de régression permettent d'évaluer la qualité de la linéarité des données et la validité du modèle utilisé.


5. Données analyte

Méthyl orange (sodium p diméthylaminoazobenzènesulfonate) :

Formule chimique brute est C₁₄H₁₄N₃O₃SNa.

Masse molaire: 327,33 g.mol⁻¹.

Attention : l'équilibre acido-basique du méthylorange modifie le spectre. Il est important de fixer et de reporter le pH du milieu (tampon recommandé) afin d'assurer la reproductibilité.

6. Mode opératoire

6.1. Préparation de la solution mère

Peser 9,82 mg de colorant méthyl orange solide et dissoudre dans une fiole à jaugée 100 mL en ajoutant 80 ml d'éthanol ; homogénéiser puis compléter au trait avec de l'eau distillée ; mélanger.

6.2. Préparation des solutions étalons

On dispose d'une solution S_0 aqueuse de méthyl orange de concentration C_0 = 3.10^{-4} mol. L^{-1} . On cherche à réaliser par dilution six solutions étalons de méthyle orange dans des fioles jaugées de 100 mL de concentrations C_i .

Compléter les colonnes du tableau :

n° Solution	Volume V _i de S ₀ introduit (mL)	Volume d'eau ajoutée (mL)	Volume total (mL)	Concentration C _i de la solution diluée de méthyle orange (mg/L ou mol/L)	Absorbance A (sans unité)
01	2,5				
02	5				
03	7,5				
04	10				
05	12,5				
06	15				

Méthodes Physicochimiques d'étude des Molécules Biologiques Année Universitaire : 2025-2026

Remarque : L'absorbance (A) sera mesurée expérimentalement et reportée dans la dernière colonne.

- Rincer la burette et les pipettes jaugées avec S₀ avant usage ; contrôler l'absence de bulles.
- Utiliser des fioles jaugées propres et des entonnoirs pour éviter les pertes.
- Boucher et homogénéiser chaque solution ; étiqueter clairement.
- Régler $\lambda = 465 \text{ nm}$; régler le zéro/100% T avec le blanc.
- Rincer la cuve avec la solution à mesurer ; orienter la cuve de manière constante.
- Mesurer l'absorbance de S1→S6.

6.3. Préparation de la solution d'une concentration inconnue

Prélever un volume x mL à partir de la solution mère de méthylorange à l'aide d'une pipette jaugée, puis transférer ce volume dans une fiole de 50 mL. Compléter avec de l'eau distillée, boucher et homogénéiser la solution. Mesurer ensuite l'absorbance de cette solution à la longueur d'onde de 465 nm à l'aide du spectrophotomètre.

7. Compte rendu

- 1. Tracer la courbe A=f (C) des solutions étalons sur un papier millimétré.
- 2. Commenter l'allure de la courbe et donner son équation.
- 3. Déterminer la concentration inconnue d'une solution méthylorange en utilisant toutes les méthodes appropriées.
- 4. Quels sont les facteurs expérimentaux pouvant affecter la précision et la justesse des mesures d'absorbance ?
- 5. Comment expliquer une déviation à haute concentration vis-à-vis de la loi de Beer-Lambert ?
- 6. Quelles sont les limites de détection et de quantification de la méthode comment peuton les estimer ?
- 7. Quelles sont les précautions à prendre pour la manipulation de l'éthanol utilisé dans la préparation des solutions ?