تمهيد:

في هذا الملحق سوف يتم تناول المتوسطات المتحركة وذلك من خلال تناول المحاول التالية:

- تعاریف
- التنبؤ باستخدام المتوسطات المتحركة.
 - ◄ المتوسطات المتحركة المرجحة.
 - ← طريقة إختيار K.
 - المتوسطات المتحركة الممركزة.

1. تعاریف:

- 1.1. طريقة المتوسطات المتحركة (Moving Averages method): تستخدم هذه الطريقة لتمهيد السلسلة الزمنية وبالتالي تمهيد خط الاتجاه العام للسلسة من خلال تلخيصها من التقلبات الشديدة قصيرة الأمد التي تعاني منها السلسلة الزمنية.
- 2.1. تعريف المتوسط المتحرك: عبارة عن الوسط الحسابي لعدد من المشاهدات المتعاقبة في السلسلة بطول معين، هذا الأخير غالبا ما يكون 3 أو 4 وحدات زمنية (سنوات أو فصول ...). يفضل اختيار طول المتوسط المتحرك فرديا من أجل الحصول على متوسطات متحركة مركزية.

(Moving Averages method) التنبؤ باستخدام المتوسطات المتحركة.2

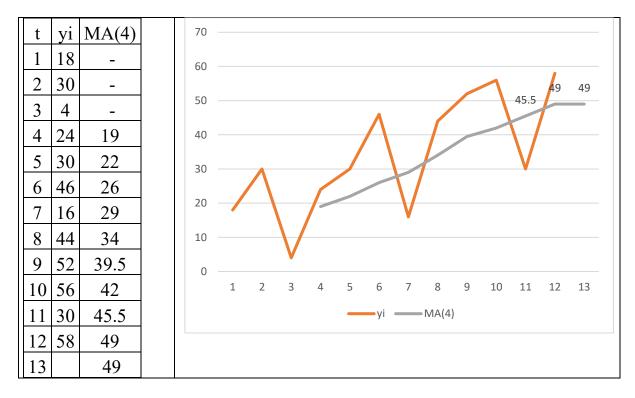
(t)	y	MA(k)
1	y 1	1
2	y ₂	•
		•
k	Уk	$(y_1+y_2++y_k)/k$
k+1	y _{k+1}	$(y_2+y_3++y_{k+1})/k$
K+2	y _{k+2}	$(y_3+y_4++y_{k+2})/k$
n	Уn	$(y_{n-k+1}+y_{n-k+2}++y_n)/k$

تقوم هذه الطريقة على تحويل السلسلة الأصلية إلى سلسلة جديدة تتمثل في متوسطات لمجموعات جزئية من السلسلة الأصلية. هذه المجموعات لها نفس التعداد (K) وتشترك كل مجموعة جزئية مع التي تليها في كل المفردات ما عدا القيمة الأولى والأخيرة. إذن استخراج المتوسطات المتحركة (MA(k)) لسلسلة Y هو استخراج بجوار السلسلة الأصلية سلسلة جديدة نقول

عنها محولة وهي كما يلي:

وهنا ينبغي التأكيد على ما يلي:

✓ عندما يكون طول المتوسط المتحرك الذي يتم اختياره عددا فرديا فإن المتوسط المتحرك يسمى بالمتوسط المتحرك المركزي.


✓ كلما كان طول المتوسط كبيرا كلما أصبحت السلسلة الزمنية أكثر نعومة (Smooth)، ولكن في المقابل سيؤدي
 إلى فقدان بعض قيم السلسلة.

مثال1: لديك رقم الأعمال الثلاثي لمؤسسة سياحية خلال ثلاث سنوات

t	1	2	3	4	5	6	7	8	9	10	11	12
yi	18	30	4	24	30	46	16	44	52	56	30	58

- حدد نافدة الموسمية واستخدمها لحساب المتوسطات المتحركة.
- مثل بيانيا السلسلتين الأصلية والمحولة بما فيها توقعات السنة المقبلة.

الحل: الشكل يبين وجود موسمية درجتها 4

- مثال2: البيانات التالية تمثل كمية استراد الحديد(Y) خلال الفترة 2010-2015.
 - سنوات. \checkmark أحسب المتوسطات المتحركة (MA)بطول 3 سنوات.
 - ✔ أرسم السلسلة الزمنية الأصلية والمتوسطات المتحركة في شكل بياني واحد.

الحل:

 $(MA_{(3)})$ حساب المتوسطات المتحركة \checkmark

t	Y	MA(3)
2010	100	/
2011	80	100
2012	120	113.33
2013	140	140
2014	160	140
2015	120	/

$$\overline{Y}_{2011} = \frac{y_1 + y_2 + y_3}{3} = \frac{100 + 80 + 120}{3} = 100$$

وهكذا يتم حساب باقي المتوسطات المتحركة كما هو موضح في الجدول.

مثال 3: البيانات التالية تمثل قيمة المبيعات الفصلية لأحدى المؤسسات التجارية. (الوحدة: 10³ وحدة نقدية)

	20	17			20	16			20	15		الفصول
4	3	2	1	4	3	2	1	4	3	2	1	
10	20	18	16	18	12	10	20	10	16	14	12	المبيعات

المطلوب:

- أحسب المتوسطات المتحركة بطول (4) سنوات.
- ارسم السلسلة الزمنية الأصلية والمتوسطات المتحركة في شكل بياني واحد.

3.1 المتوسطات المتحركة المرجحة (MMP): في هذه الطريقة نقوم بإعطاء للزمن أو التواريخ أوزان مختلفة، فالتاريخ الأحدث يعطى وزن أكبر من التواريخ التي سبقتها. يمكن أن تكون الأوزان أعدادا طبيعية ويمكن V كأن تكون مثلا 5، الأحدث يعطى وزن أكبر من التواريخ التي سبقتها. يمكن أن تكون الأوزان أعدادا طبيعية ويمكن V وهكذا... إلخ. هذه الأوزان تضرب في القيم المقابلة لها لقيم الظاهرة المدروسة V ومن ثم نقسم على مجموع الأوزان عند حساب المتوسطات المتحركة.

مثال4: لتكن لديك البيانات التالية لسهر سهم معين يوميا في إحدى البورصات عند الاقفال.

Day			3									12
Y	29	27	20	14	10	30	32	20	14	10	32	32

المطلوب:

- استخرج المتوسطات المتحركة المرجحة من الدرجة 3 بالأوزان 5،3 و2.
 - أحسب القيم المتوقعة لسعر السهم في الأيام 13، 14.

الحل:

Day	Y		MMP
1	29		-
2	27		-
3	20	[(29*2)+(27*3)+(20*5)]/10	23.9
4	14	[(27*2)+(20*3)+(14*5)]/10	18.4
5	10	[(20*2)+(14*3)+(10*5)]/10	13.2
6	30		20.8
7	32		27
8	20		25.6
9	14		19.4
10	10		13.2
11	32		21.8
12	32		27.6
13			27.6
14			27.6

ملاحظة هامة: من الشائع في الجدول التالي يبين كيفية حساب المتوسطات المتحركة المرجحة في هذه الحالة:

t	у	$\hat{Y} = MMP$
1	Y_1	-
2	Y_2	-
		-
K	Y_k	$(y_1 + 2y_2 + 3y_3 + \dots + ky_k)/(k(k+1)/2)$
K+1	Y_{k+1}	$(y_2 + 2y_3 + 3y_4 + \dots + ky_{k+1})/(k(k+1)/2)$
• • •		
n	y n	$(y_{n-k+1} + 2y_{n-k+2} + 3y_4 + \dots + ky_n) / (k(k+1)/2)$

ملاحظة هامة: من الشائع في السلاسل الزمنية عندما يكون K كبير استخدام أوزان متناقصة خطيا، بحيث يكون للقيمة الأحدث وزن K وللقيمة الأقدم وزن 1. في هذه الحالة يكون وزن 1. في هذه الحالة يكون مجموع الأوزان يساوي:

4.طريقة اختيار K:

- k=4 في حالة المعطيات الفصلية تفضل أن تكون k=4
- في حالة المعطيات الشهرية تفضل أن تكون k=12؛
 - في الحالات الأخرى نختارها بطريقة عفوية.

ملاحظة هامة: نشير إلى أن هذه الطريقة انتقدت على أساس أنها تمهد السلسلة اعتمادا على المشاهدات الماضية فقط، ولم تأخذ المستقبلية بعين الاعتبار.

تموضع السلسلة المحولة:

1.4. الطريقة الأولى ($Trailing\ MA$): تعرف هذه الطريقة بوضع المتوسط الأولى للمجموعة الأولى مقابل التاريخ K والمتوسط الثاني الخاصة بالمجموعة الثانية مقابل التاريخ K وهكذا حتى نصل للمتوسط الأخير مقابل التاريخ K

2.4. الطريقة الثانية (centred MA): وهي بوضع متوسط المجموعة الأولى مقابل مركز المجموعة الأولى، أي (k+1)/2 بتاريخ (k+1)/2)، ومتوسط المجموعة الثانية في التاريخ الموالي وهكذا.

أما في حالة K زوجية، هنا V تتطابق القيم المحولة مع ذات التواريخ في السلسلة الأصلية. لإعادة مطابقة تواريخ السلسلة المحولة نقوم بالمركزة، وهي، وهي استخراج متوسطات من الرتبة V للمتوسطات المتحركة ذات الرتبة الزوجية. فمثلاً لمركزة V نستخرج لها متوسطات متحركة جديدة من الدرجة V وتسمى السلسلة الجدية المتوسطات المتحركة الممركزة V (Centered Moving Average).

5. المتوسطات المتحركة الممركزة (CMA): يمكن اختصار الحسابات في هذه الطريقة بقسمة القيمة الأولى والأخيرة في المجموعة على 2 وحساب المتوسط للقيم.

مثلا: في حالة k=4 فإن المتوسط المتحرك المركزي الأول يحسب كما يلي:

$$MA(4)_{1} = (y_{1} + y_{2} + y_{3} + y_{4})/4$$

$$MA(4)_{2} = (y_{2} + y_{3} + y_{4} + y_{5})/4$$

$$CMA_{1} = \left[\frac{y_{1} + y_{2} + y_{3} + y_{4} + y_{5}}{4} + \frac{y_{2} + y_{3} + y_{4} + y_{5}}{4}\right]/2 \Rightarrow$$

$$CMA_{1} = \frac{y_{1} + 2y_{2} + 2y_{3} + 2y_{4} + y_{5}}{8} \Rightarrow$$

$$CMA_{1} = \frac{1}{8}(y_{1} + 2y_{2} + 2y_{3} + 2y_{4} + y_{5}) \Rightarrow$$

$$CMA_{1} = \frac{1}{8}\left[2(\frac{y_{1}}{2} + y_{2} + y_{3} + y_{4} + \frac{y_{5}}{2})\right] \Rightarrow$$

$$CMA_{1} = \frac{1}{4}(\frac{y_{1}}{2} + y_{2} + y_{3} + y_{4} + \frac{y_{5}}{2})$$

ثانيا: نقوم الأن بالمركزة، أي حساب متوسط من الدرجة 2 للمتوسطات المتحركة الأول والثابي

أولا: نقوم بحساب المتوسط المتحرك من الدرجة 4 الأول

والثاني.

وهكذا يتم حساب باقي المتوسطات المتحركة الممركزة لباقي التواريخ. فمثلا حساب المتوسط المتحرك الممركز للمتوسطين الثاني والثالث

$$CMA_2 = \frac{1}{4}(\frac{y_2}{2} + y_3 + y_4 + y_5 + \frac{y_6}{2})$$
 یکون کما یلي: یکون کما یلی

خلاصة: عند حساب المتوسط المركزي نقوم بجمع (k+1) حد، حيث الحدين الأول والأخير هما نصفي القيمتين ونقسم على K.