COURSE

3

Sampling and Estimation

Below detailed solutions full algebraic are (step-by-step, with and numerical calculations) for the exercise series provided the file $"S\'{e}rie_de_TD2"$. Allanswersaregivenin Englishandpresented using the same LaTeX templates tyleyous pecifications.

$oxed{1}$ Exercise 1 — Elementary Set and robability Operations

Statement

An experiment yields three events A, B and C. We are given:

$$P(A) = 0.15, \quad P(B) = 0.3, \quad P(C) = 0.4, \quad P(A \cup B) = 0.42, \quad P(A \cap C) = 0.05,$$

and it is stated that B and C are incompatible (mutually exclusive), i.e. $P(B \cap C) = 0$. Compute:

- 1. $P(\overline{A})$
- 2. $P(B \cup C)$
- 3. $P(A \cap B)$
- 4. $P(A \cap \overline{C})$
- 5. $P(\overline{A} \cap \overline{B})$

Solution

We use standard set and probability identities.

1. Complement of A:

$$P(\overline{A}) = 1 - P(A) = 1 - 0.15 = 0.85.$$

2. Union $B \cup C$: since B and C are incompatible, $P(B \cap C) = 0$. Thus

$$P(B \cup C) = P(B) + P(C) - P(B \cap C) = 0.3 + 0.4 - 0 = 0.7.$$

3. Intersection $A \cap B$: use

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Rearrange to get

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.15 + 0.3 - 0.42 = 0.03.$$

4. $A \cap \overline{C}$: note that A decomposes as $A = (A \cap C) \cup (A \cap \overline{C})$ and these two are disjoint, hence

$$P(A) = P(A \cap C) + P(A \cap \overline{C}).$$

Therefore

$$P(A \cap \overline{C}) = P(A) - P(A \cap C) = 0.15 - 0.05 = 0.10.$$

5. $\overline{A} \cap \overline{B}$: by De Morgan,

$$\overline{A} \cap \overline{B} = \overline{A \cup B},$$

SO

$$P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B) = 1 - 0.42 = 0.58.$$

Summary of results:

$$P(\overline{A}) = 0.85, \quad P(B \cup C) = 0.70, \quad P(A \cap B) = 0.03,$$

$$P(A \cap \overline{C}) = 0.10, \quad P(\overline{A} \cap \overline{B}) = 0.58.$$

Exercise 2 — Law of Total Probability and Bayes' Rule

Statement

A batch of test tubes is supplied by three companies A, B and C with proportions

$$P(A) = 0.50, \quad P(B) = 0.30, \quad P(C) = 0.20.$$

Defective rates are:

$$P(D \mid A) = 0.02, \quad P(D \mid B) = 0.03, \quad P(D \mid C) = 0.04.$$

A tube is chosen at random from the batch.

- 1. What is the probability that the chosen tube is defective, P(D)?
- 2. Given that the chosen tube is defective, what is the probability it came from company A, i.e. $P(A \mid D)$?

Solution

1. Using the law of total probability:

$$P(D) = P(A)P(D \mid A) + P(B)P(D \mid B) + P(C)P(D \mid C).$$

Compute each term precisely:

$$P(A)P(D \mid A) = 0.50 \times 0.02 = 0.010,$$

$$P(B)P(D \mid B) = 0.30 \times 0.03 = 0.009,$$

$$P(C)P(D \mid C) = 0.20 \times 0.04 = 0.008.$$

Sum:

$$P(D) = 0.010 + 0.009 + 0.008 = 0.027.$$

Hence P(D) = 0.027 (which is 2.7%).

2. Posterior probability $P(A \mid D)$ via Bayes' theorem:

$$P(A \mid D) = \frac{P(A)P(D \mid A)}{P(D)} = \frac{0.50 \times 0.02}{0.027} = \frac{0.010}{0.027}.$$

Compute the quotient exactly (to reasonable precision):

$$\frac{0.010}{0.027}\approx 0.37037037037\dots$$

So

$$P(A \mid D) \approx 0.37037$$
 (about 37.037%).

Exercise 3 — Binomial Probability Germination)

Statement

A seed has probability p = 0.8 to germinate when planted. If the researcher plants n = 10 seeds, compute the probability that at least 8 of them germinate:

$$P(\text{at least 8}) = P(X \ge 8)$$
 where $X \sim \text{Bin}(n = 10, p = 0.8)$.

Solution

We compute

$$P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10).$$

The binomial probability mass function is

$$P(X = k) = {10 \choose k} p^k (1 - p)^{10 - k}.$$

Compute term by term with exact arithmetic and then numeric evaluation.

For k = 8:

$$\binom{10}{8} = 45, \quad p^8 = 0.8^8, \quad (1-p)^2 = 0.2^2 = 0.04.$$

Thus

$$P(X = 8) = 45 \times 0.8^8 \times 0.04.$$

Numerically,

$$0.8^2 = 0.64, \ 0.8^4 = 0.4096, \ 0.8^8 = (0.4096)^2 \approx 0.16777216.$$

So

$$P(X=8) = 45 \times 0.16777216 \times 0.04 = 45 \times 0.0067108864 \approx 0.3019898880.$$

For k = 9:

$$\binom{10}{9} = 10, \quad p^9 = 0.8^9 = 0.8 \times 0.8^8 \approx 0.8 \times 0.16777216 = 0.134217728,$$

$$(1-p)^1 = 0.2.$$

Hence

$$P(X = 9) = 10 \times 0.134217728 \times 0.2 = 10 \times 0.0268435456 \approx 0.2684354560.$$

For k = 10:

$$\binom{10}{10} = 1, \quad p^{10} = 0.8^{10} = 0.8 \times 0.8^9 \approx 0.8 \times 0.134217728 = 0.1073741824,$$

$$(1-p)^0 = 1.$$

So

$$P(X = 10) \approx 0.1073741824.$$

Sum:

$$P(X \ge 8) \approx 0.3019898880 + 0.2684354560 + 0.1073741824 = 0.6777995264.$$

Therefore the probability that at least 8 seeds germinate is approximately

$$0.6777995264 \approx 0.6778 (67.78\%)$$

Exercise 4 — Normal Probability Newborn Weights)

Statement

Newborn weights are approximately normally distributed with mean $\mu = 3.4$ kg and standard deviation $\sigma = 0.5$ kg. Compute the probability that a newborn weight less than 3 kg:

$$P(X < 3)$$
 for $X \sim \mathcal{N}(3.4, 0.5^2)$.

Solution

Standardize using the standard normal variable Z:

$$Z = \frac{X - \mu}{\sigma}$$
.

Compute the z-score:

$$z = \frac{3 - 3.4}{0.5} = \frac{-0.4}{0.5} = -0.8.$$

Thus

$$P(X < 3) = P(Z < -0.8) = \Phi(-0.8).$$

Using the standard normal CDF value:

$$\Phi(-0.8) \approx 0.2118553986.$$

Therefore

$$P(X < 3) \approx 0.2118554 \ (\approx 21.19\%)$$

(Equivalently, $P(X \ge 3) = 1 - 0.2118554 \approx 0.7881446.$)

Exercise 5 (Supplementary) — Normal ail Probability

Statement

The concentration of a chemical in a biological sample is normally distributed with mean 25 mg/L and standard deviation 5 mg/L. Compute the probability that a randomly chosen concentration exceeds 30 mg/L:

$$P(X > 30)$$
 for $X \sim \mathcal{N}(25, 5^2)$.

Solution

Standardize:

$$z = \frac{30 - 25}{5} = \frac{5}{5} = 1.$$

Thus

$$P(X > 30) = P(Z > 1) = 1 - \Phi(1).$$

Using the standard normal table (or numerical value),

$$\Phi(1) \approx 0.8413447461,$$

SO

$$P(X > 30) \approx 1 - 0.8413447461 = 0.1586552539.$$

Hence

$$P(X > 30) \approx 0.1586553 \ (\approx 15.87\%)$$

Notes:

- All normal distribution quantiles and probabilities above were computed to at least 7 decimal places and then rounded for presentation; you may increase precision using statistical software if needed.
- For Exercise 3 (binomial), computations were shown step-by-step (powers of 0.8 explicitly computed) to ensure exact numeric clarity.
- If you would like these solutions translated back into Arabic, inserted into your exact chapter LaTeX file, or exported as a compiled PDF, tell me which option you prefer and I will produce the file for download.