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Siméon Denis Poisson

Academic Year 2025/2026



Contents

1 Notions of Logic 4

2 Sets and Binary Relations 5

3 Functions and Mappings 6

I Functions 7
3.1 Definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II Mappings 10
3.2 Definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Extension and restriction of mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Composition of mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Direct Image, Inverse Image of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Classification of Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6.1 Injective, Surjective, Bijective mappings . . . . . . . . . . . . . . . . . . . . . 19
3.7 Inverse mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Order and mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



List of Figures

3.1 Function, not Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Mapping, not Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 (left) Direct image f (A), (right) Inverse image f −1(B) . . . . . . . . . . . . . . . . . . 17
3.4 Injective mapping, not injective mapping . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Surjective mapping, not surjective mapping . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Bijective mapping, not bijective mapping . . . . . . . . . . . . . . . . . . . . . . . . 20

3



Chapter 1

Notions of Logic

4



Chapter 2

Sets and Binary Relations

5



Chapter 3

Functions and Mappings

This chapter introduces the fundamental concepts of functions and mappings in mathematics. We

begin with functions as relations between sets where each input is associated with at most one

output. When this association is defined for every element in the starting set, we call it a mapping.

The chapter explores essential concepts including domain, image, and function notation, then

moves to composition of mappings and the study of direct and inverse images of sets. We classify

mappings into injective, surjective, and bijective types, examine inverse mappings, and conclude

with the relationship between mappings and order relations.
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Part I

Functions
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3.1 Definitions and notations

Definition 1 Let E and F be two non-empty sets.

1. A function from the set E to the set F is a correspondence (or relation), denoted f , that associates to each

element x in E at most one element y in F.

2. If an element x ∈ E is associated with an element y ∈ F by the function f , we write y = f (x). In this

case, y is called the image (or the value) of x under f , and x is called a preimage (or antecedent) of y under

f .

Notation 2

• A function is written as

f : E −→ F

x 7−→ y = f (x),

or, f : x 7−→ f (x).

• The notation f : E −→ F is read as ” f is a function from E to F” or ” f is a function defined on E with

values in F and x 7−→ f (x) is read as ”x is associated with its image f (x)”.

Figure 3.1: Function, not Function

Definition 3 Let E and F be two non-empty sets, and let f : E −→ F be a function.
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1. The domain (or the set of definition) of the function f , denoted Dom( f ), is the set

Dom( f ) =
{
x ∈ E,∃y ∈ F : f (x) = y

}
⊂ E.

In other words, Dom( f ) is the set of elements in E that have an image under f , or equivalently, the set of all

x for which f (x) exists and has a value.

2. The image set of f , denoted Im( f ) or f (E), is the set

Im( f ) =
{
y ∈ F,∃x ∈ E : f (x) = y

}
=

{
f (x) ∈ F : x ∈ E

}
⊂ F.

In other words, Im( f ) is the set of all values taken by the function f .

Example 4

1. Consider the function (Absolute Value Function)

f : R −→ R

x 7−→ f (x) = |x| ,

then:

• Domain of f : The absolute value function is defined for all real numbers, so Dom( f ) = R.

• Image set of f : For every real number x, |x| is always non-negative, so Im( f ) = R+.

2. Consider the function (Square Root Function)

f : R −→ R

x 7−→ f (x) =
√

x,

• Domain of f : f (x) is only exists forx ≥ 0, so Dom( f ) = R+.

• Image of f : Since
√

x ≥ 0, the image is Im( f ) = R+.
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Part II

Mappings
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3.2 Definitions and notations

Definition 5 Let E and F be two non-empty sets.

1. A mapping from a set E to a set F is a relation that associates each element x ∈ E with a unique element,

denoted by f (x) in the set F.

• In other words: For every x ∈ E, there exists exactly one y ∈ F such that
(
x, y

)
is in the relation.

2. Using quantifiers, this can be expressed as

f is a mapping ⇐⇒ ∀x ∈ E,∃!y ∈ F : f (x) = y.

Remark 6 A function f : E −→ F is a mapping if and only if Dom( f ) = E, where Dom( f ) denotes the

domain of f .

Notation 7 The set of all mappings f : E −→ F is denoted by F (E,F) or FE, and if E = F it is denoted by

F (E) or EE.

Figure 3.2: Mapping, not Mapping

Example 8 f : {1, 2, 3, 4} −→ {0, 1} defined by

n 7−→ f (n) =

 0, if n is even,

1, if n is odd.
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is a mapping because each element of {1, 2, 3, 4}has exactly one image in {0, 1}.

f (1) = 1, f (2) = 0, f (3) = 1, f (4) = 0.

Definition 9 (Equality of mappings)

Two mappings f : E1 −→ F1 and 1 : E2 −→ F2 are said to be equal if the following three properties hold:

(i) E1 = E2 (same domain),

(ii) F1 = F2 (same codomain),

(iii) For all x, f (x) = 1(x).

In other words, two mappings are equal if they have the same domain and codomain and their values are the

same for all elements of the domain.

Example 10 Consider the mappings

f1 : R −→ R

x 7−→ f1(x) = cos x
and

f2 : R −→ R

x 7−→ f2(x) = 2 cos2( x
2 ) − 1.

We have f1 = f2. Indeed, using the trigonometric identity

cos 2α = 2 cos2 α − 1,

and setting α = x
2 , it follows that

f1(x) = cos x = 2 cos2(
x
2

) − 1 = f2(x).

Then f1 = f2.

Definition 11 (Special mappings)

1. Identity mapping: The identity mapping of a set E is the mapping from E to E, denoted by IdE (or

sometimes just Id ) defined as follows:

∀x ∈ E : IdE(x) = x.

2. Constant mapping: A mapping f : E −→ F is called a constant mapping if there exists an element

c ∈ F such that

∀x ∈ E : f (x) = c.
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A constant mapping is often denoted simply by the constant value c (i.e, f = c).

3. Zero Mapping: Let E be a set, and let f : E −→ R be a mapping. The zero mapping, denoted by 0, is

defined by

∀x ∈ E : f (x) = 0.

4. Indicator Mapping: Let A be a subset of a set E. The indicator mapping of A in E (sometimes referred

to as the characteristic mapping of A in E), denoted by ϕA is the mapping defined as follows

ϕA : E −→ {0, 1}

x 7−→ ϕA(x) =

 1, if x ∈ A

0, if x < A

⇐⇒

ϕA : E −→ {0, 1}

x 7−→ ϕA(x) =

 1, if x ∈ A

0, if x ∈ A.

Example 12

1. It is clear that

ϕR+(2) = 1, ϕR−(2) = 0, ϕQ(π) = 0.

2. Consider the mapping

f (x) =

 e−x, if x ≥ 0

0, if x < 0.

Using an indicator mapping, f can be written in a single line as

f (x) = e−xϕ[0,+∞[(x),

for all values of x.

Proposition 13 Let E be a set, and A and B be two subsets of E. Then the indicator mapping satisfies the

following properties

1. ϕ2
A = ϕA 2. A ⊂ B⇐⇒ ϕA ≤ ϕB

3. A = B⇐⇒ ϕA = ϕB 4. ϕCA
E

= 1 − ϕA

5. ϕA∩B = ϕA.ϕB 6. ϕA|B = ϕA(1 − ϕB)

7. ϕA∪B = ϕA + ϕB − ϕA.ϕB 8. ϕA4B = ϕA + ϕB − 2.ϕAϕB =
(
ϕA − ϕB

)2
=

∣∣∣ϕA − ϕB

∣∣∣ .
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3.3 Extension and restriction of mapping

Definition 14 Let f : E −→ F be a mapping, with E1 ⊂ E and E ⊂ E2.

1. The restriction of f to E1, denoted 1 = f/E1 , is the mapping from E1 to F defined by

∀x ∈ E1 : 1(x) = f/E1(x) = f (x).

In other words, 1 coincides with f on E1.

2. The extension of f to E2 is any function f̃ from E2 to F whose restriction to E is equal to f , i.e.,

∀x ∈ E : f̃ (x) = f (x).

Example 15 The mapping

f̃ : R −→ R

x 7−→ f̃ (x) =


sin x

x , if x , 0

1, if x = 0,

is an extension of the mapping f to R such that

f : R∗ −→ R

x 7−→ f (x) = sin x
x .

and f is a restriction of f̃ to R∗.

3.4 Composition of mappings

The composition of a mappings is an operation where two mappings say f and 1 generate a new

function say h in such a way that h(x) = 1( f (x)). It means here mapping 1 is applied to the mapping

of x. So, basically, a mapping is applied to the result of another mapping.

Definition 16 Let f : E −→ F and 1 : F −→ G be two mappings. The composition of 1 and f , denoted

1 ◦ f (read as ”1 round f ” or ”1 composed with f ”), is the mapping from E to G defined by

∀x ∈ E, 1 ◦ f (x) = 1( f (x)).
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Remark 17

1. The composition of two mappings can be represented schematically as follows

E
f
−→ F

1
−→ G

x 7−→ f (x) = y 7−→ 1(y)

E
1◦ f
−→ G

x 7−→ 1( f (x))

2. In general, 1 ◦ f , f ◦ 1 where f and 1 are two mappings from F (E).

Example 18 Consider the two mappings

f : R −→ R

x 7−→ f (x) = x + 1,

and
1 : R −→ R

x 7−→ 1(x) = x2.

For every real number x, we have

(
1 ◦ f

)
(x) = 1( f (x)) =

(
f (x)

)2
= (x + 1)2 ,

while (
f ◦ 1

)
(x) = f (1(x)) = 1(x) + 1 = x2 + 1.

In particular,
(
1 ◦ f

)
(−1) = 0 and

(
f ◦ 1

)
(−1) = 2. Therefore, here 1 ◦ f , f ◦ 1..

Remark 19 Let f : E −→ E be a mapping. We define

f 0 = IdE.

For every n ∈N∗, the composition of f with itself n times is denoted by

f n = f ◦ f ◦ ... ◦ f︸         ︷︷         ︸
n times

= f ◦ f n−1 = f n−1
◦ f .
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Proposition 20 Let f : E −→ F, 1 : F −→ G, h : G −→ H be mappings. Then we have

• The composition operation is associative

(
h ◦ 1

)
◦ f = h ◦

(
1 ◦ f

)
.

• The identity property

f ◦ IdE = IdF ◦ f = f .

3.5 Direct Image, Inverse Image of Sets

Definition 21 Let f : E −→ F be a mapping. Let A ⊂ E and B ⊂ F. Then

1. (a) The direct image of the subset A under f , denoted f (A), is the set of all images of the elements of A

under f . Formally

f (A) =
{
y ∈ F,∃x ∈ A : f (x) = y

}
=

{
f (x) : x ∈ A

}
⊂ F.

In terms of quantifiers, this can be written as

∀y ∈ F :
(
y ∈ f (A)⇐⇒ ∃x ∈ A : f (x) = y

)
.

(b) The image f (E) of the domain E, is called the image of f (or the range of f ), denoted Im( f ),

Im( f ) = f (E) =
{
f (x) : x ∈ E

}
⊂ F.

2. The inverse image (or Preimage) of the subset B under f , denoted f −1(B), is the set of all preimages of the

elements of B under f . Formally

f −1(B) =
{
x ∈ E,∃y ∈ B : f (x) = y

}
=

{
x ∈ E : f (x) ∈ B

}
⊂ E.

Using quantifiers, this can be expressed as

∀x ∈ E :
(
x ∈ f −1(B)⇐⇒ f (x) ∈ B

)
.
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Figure 3.3: (left) Direct image f (A), (right) Inverse image f −1(B)

Example 22 Let f : R −→ R be defined by x 7−→ f (x) = x2 , and let A = [−1, 1], . Then,

f (A) = f ([−1, 1]) =
{
x2 : x ∈ [−1, 1]

}
= [0, 1] ,

and

Im( f ) = f (R) = R+.

For B = {4}, we find that

f −1(B) = {−2, 2} .

Indeed,

x ∈ f −1(B)⇐⇒ f (x) ∈ B = {4} ⇐⇒ f (x) = 4

Therefore, the preimage is x ∈ {−2, 2}.

Proposition 23 (Properties of Direct Image and Inverse Image)

Let f : E −→ F be a mapping. Then, the following properties hold:

1. Properties of Direct Image:

(a). Monotonicity:

∀A,B ∈ P(E) : A ⊂ B =⇒ f (A) ⊂ f (B).

That is, the image of a subset of E is contained within the image of a larger subset.

(b). Image of Union

∀A,B ∈ P(E) : f (A ∪ B) = f (A) ∪ f (B).

The image of the union of two sets is the union of the images of those sets.

(c). Image of Intersection:

∀A,B ∈ P(E) : f (A ∩ B) ⊂ f (A) ∩ f (B).
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The image of the intersection of two sets is contained within the intersection of their images.

(d) Image of Complement

∀A ∈ P(E) : f
(
CA

E

)
⊂ C f (A)

F .

The image of the complement of a subset is a subset of the complement of the image.

(e). Image of the entire Domain and the empty set:

f
(
φ
)

= φ, f (E) ⊂ F.

2. Properties of Inverse Image:

(a). Monotonicity:

∀C,D ∈ P(F) : C ⊂ D =⇒ f −1(C) ⊂ f −1(D).

The preimage of a smaller subset is contained within the preimage of a larger subset.

(b). Preimage of Union:

∀C,D ∈ P(F) : f −1(C ∪D) = f −1(C) ∪ f −1(D).

The preimage of the union of two sets is the union of their preimages.

(c). Preimage of Intersection:

∀C,D ∈ P(F) : f −1(C ∩D) = f −1(C) ∩ f −1(D).

The preimage of the intersection of two sets is the intersection of their preimages.

(d) Preimage of Complement:

∀D ∈ P(F) : f −1
(
CD

F

)
= C f−1(D)

E .

The preimage of the complement of a set is the complement of the preimage.

(e) Preimage of the empty set and the entire codomain:

f −1
(
φ
)

= φ, f −1(F) = E.

3.6 Classification of Mappings

The mappings can be classified into different types based on their properties, particularly focusing

on how the elements from the domain are mapped to the codomain. The three most common
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classifications are injective, surjective, and bijective mappings.

3.6.1 Injective, Surjective, Bijective mappings

Definition 24 Let f : E −→ F be a mapping. Then

1.Injective mappings (One-to-One mappings): We say that f is injective, or an injection from E to F, if and

only if

∀x1, x2 ∈ E : x1 , x2 =⇒ f (x1) , f (x2).

Equivalently, f is injective if and only if

∀x1, x2 ∈ E : f (x1) = f (x2) =⇒ x1 = x2.

2. Surjective mappings (Onto mappings): We say that f is surjective or a surjection from E to F if and

only if

∀y ∈ F,∃x ∈ E : f (x) = y.

Equivalently, f is surjective if and only if

Im( f ) = f (E) = F.

3. Bijective mappings (One-to-One Correspondences): We say that f is f is bijective (or a bijection from E

to F) if and only if f is both injective and surjective. Equivalently, f is bijective if and only if

∀y ∈ F,∃!x ∈ E : f (x) = y.

Figure 3.4: Injective mapping, not injective mapping
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Figure 3.5: Surjective mapping, not surjective mapping

Figure 3.6: Bijective mapping, not bijective mapping

Remark 25 Let f : E −→ F be a mapping. Then

1. f is injective if and only if every element y ∈ F has at most one preimage x ∈ E under f .

2. f is surjective if and only if every element y ∈ F has at least one preimage x ∈ E under f .

3. f is bijective if and only if every element y ∈ F has exactly one preimage x ∈ E under f .

Example 26

1. For any set E, the identity mapping IdE is injective. Indeed, let x1, x2 ∈ E such that IdE(x1) = IdE(x2).

By the definition of the IdE , we have x1 = x2. Therefore, IdE is injective.

2. Let f : Z −→ N be defined by f (x) = x2. Then, f is not surjective. Indeed, there exist elements y ∈ N

that have no preimages, such as y = 2. Suppose 2 has a preimage x under f . Then, we would have

f (x) = 2 =⇒ x2 = 2

=⇒ x =
√

2 or x = −
√

2.

However, neither
√

2 nor −
√

2 are integers inZ. Therefore, y = 2 has no preimage, and f is not surjective.

3. The exponential mapping f : x 7−→ exp(x) is a bijective mapping from R to R∗+. Specifically:

20



• Injectivity: If exp(x1) = exp(x2), then x1 = x2, confirming that f is injective.

• Surjectivity: For every y > 0, there exists x ∈ R such that y = exp(x), with x = ln(y), confirming that

f is surjective.

4. The natural logarithm mapping defined by

f : R∗+ −→ R

x 7−→ f (x) = ln x,

is bijective. This is because it is both injective and surjective.

Proposition 27 (Composition of Injective, Surjective, and Bijective mappings)

Let f : E −→ F and 1 : F −→ G be two mappings. The following properties hold:

1. If f and 1 are injective, then 1 ◦ f is injective.

2. If f and 1 are surjective, then 1 ◦ f is surjective.

3. If f and 1 are bijective, then 1 ◦ f is bijective.

4. If 1 ◦ f is injective, then f is injective.

5. If 1 ◦ f is surjective, then 1 is surjective.

There is a very special case where to prove the bijectivity of f : E −→ F, it is sufficient to

show either its surjectivity or injectivity. This occurs when E and F are finite sets with the same

cardinality.

Theorem 28 Let E and F be finite sets with the same cardinality (Card(E) = Card(F)). If f : E −→ F is a

mapping, then

f is bijective⇐⇒ f is injective⇐⇒ f is surjective.

3.7 Inverse mappings

If f is a bijective mapping from a set E to a set F , then there is a mapping from F to E that “undoes”

the action of F; that is, it sends each element of F back to the element of E that it came from. This

mapping is called the inverse mapping for f and is usually denoted by f −1.

Definition 29 Let f : E −→ F be a bijective mapping.

1. The mapping from F to E that associates each element y ∈ F in the codomain of f with its unique
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preimage x ∈ E, such that y = f (x), is called the inverse mapping of f , denoted f −1.

2. The inverse mapping f −1 is characterized by the following property

∀(x, y) ∈ E × F : y = f (x)⇐⇒ x = f −1(y).

Example 30

1. The mapping

f : R −→ ]0,+∞[

x 7−→ f (x) = ex

is bijective. Its inverse is the mapping

f −1 : ]0,+∞[ −→ R

x 7−→ f −1(x) = ln(x).

because

∀(x, y) ∈ R × ]0,+∞[ : y = ex
⇐⇒ x = ln(y).

2. Let E be a set. Then the mapping

f : P(E) −→ P(E)

X 7−→ f (X) = CX
E

is bijective, and f −1 = f .

Proposition 31 (Characterization of a Bijection and Its Inverse)

Let f : E −→ F be a mapping.

1. f is bijective if and only if there exists a mapping 1 : F −→ E such that

1 ◦ f = IdE and f ◦ 1 = IdF.

where IdE and IdF denote the identity mappings on E and F, respectively.

2. If f is bijective, then the mapping 1 is unique and also bijective. Moreover,

1−1 =
(

f −1
)−1

= f .
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In other words,

1−1 =
(

f −1
)−1

= f .

Corollary 32

1. Let f : E −→ F be a bijective mapping. Then the inverse mapping f −1 of f satisfies

f −1
◦ f = IdE and f ◦ f −1 = IdF.

2. Let f : E −→ F and 1 : F −→ G be two bijective mappings. Then the inverse of the composition 1 ◦ f is

given by the following formula (
1 ◦ f

)−1
= f −1

◦ 1−1.

3.8 Order and mappings

Definition 33 Let (E,�) and (F,�) be two ordered sets, and let f : E −→ F be a mapping. Then we say

that:

1. f is increasing if and only if

∀x, y ∈ E : x � y =⇒ f (x) � f (y).

2. f is decreasing if and only if

∀x, y ∈ E : x � y =⇒ f (y) � f (x).

3. f is monotone if and only if f is either increasing or decreasing.

4. f is strictly increasing if and only if

∀x, y ∈ E :


x � y

and

x , y

=⇒


f (x) � f (y)

and

f (x) , f (y).
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5. f is strictly decreasing if and only if

∀x, y ∈ E :


x � y

and

x , y

=⇒


f (y) � f (x)

and

f (x) , f (y).

6. f is strictly monotone if and only if f is strictly increasing or strictly decreasing.

Example 34

1. The mapping

f : (N∗, |) −→ (N∗, |)

x 7−→ f (x) = x2

is strictly increasing with respect to the divisibility relation |.

2. For any set E, the mapping

1 : (P(E),⊂) −→ (P(E),⊂)

X 7−→ 1(X) = CX
E

is strictly decreasing with respect to the inclusion relation ⊂.
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