Chapter 03 : Differential equations

I- Ordinary differential equations

- 1. Definitions
- 2. First order differential equations
- 3. second order equations with constant coefficients

1. Ordinary differential equations

1) Definition: Every relation between real variable x, unknown continuous function y, and its Derivatives $y', y'', y^{(3)}, ..., y^{(n)}$ is called an ordinary differential equation.

Any ordinary differential equation (ODE) is presented by one of the following

$$(E) : F(x, y, y', ..., y^{(n)}) = 0 \text{ ou } y^{(n)} = F(x, y, y', ..., y^{(n-1)})$$

We call the integer n in equation (E) the order of the equation.

Examples:

$$(E_1): y' = xy + 3$$
 EDO of order 1.

$$(E_2): y'' + x^2y' = x$$
 EDO of second order.

$$(E_3)$$
: $x(y')^2 + y + e^x = 0$ EDO of first order.

$$(E_4): y'' - (y')^3 = \cos(x)$$
 EDO of order 2.

2) Solution of the ordinary differential equation

We call solution of the equation (E) every function φ , n-times deffirentiable on

$$I \subseteq \mathbb{R}$$
, and $F(x, \varphi, \varphi', ..., \varphi^{(n)}) \neq 0$.

We call φ the integral of the equation (E) on $I \subseteq \mathbb{R}$. And the graph of φ

Theorem:

Let the differential equation (E): $F(x, y, y', ..., y^{(n)}) = 0$

Is called the integral curve of (E).

If φ_1 , and φ_2 are two solutions of (E) on $I \subseteq \mathbb{R}$.

Then: For any $\alpha, \beta \in \mathbb{R}$, $\alpha \varphi_1 + \beta \varphi_2$ is solution of (E).

Example:

Let (E):
$$y'' - 5y + 6y = 0$$
, $\varphi_1(x) = e^{2x}$, and $\varphi_2(x) = e^{3x}$ are solutions of (E).

Then: $\varphi(x) = \varphi_1(x) + \varphi_2(x) = e^{2x} + e^{3x}$ is solution of (E).

$$(\varphi'(x) = 2e^{2x} + 3e^{3x}, \varphi''(x) = 4e^{2x} + 9e^{3x}, \varphi''(x) - 5\varphi'(x) + 6\varphi(x) = 0)$$

3) Cauchy problem:

The Cauchy problem is written by : (*P*) :
$$\begin{cases} y^{(n)} = F(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$

Example: Solve the problem (P): $\begin{cases} y' + 2xy = 0 \\ y(0) = 2 \end{cases}$

2. Ordinary differential equation of first order

They have the form: f(x, y, y') = 0 ou y' = f(x, y)

There are three main types of differential equations of first order.

Differential equation with separate variables.

Homogeneous differential equations

Linear differential equations

And a finite number of special equations: Bernoulli equation, equation of Riccati, equation

Of Lagrange, and Clairaut equation....

Resolution of differential equations of order 1:

1) differential equations with separate variables: They have the form: f(y)y' = g(x)

$$\int f(y)dy = \int g(x)dx \quad \text{(Find } y \text{ as a function of } x\text{)}$$

Examples: 1) (E_1) $(1+x^2)y' = xy$ EDO with separate variables

2)
$$(E_2)$$
 : $x y' = y + xy$

3)
$$(E_3)$$
:
$$\begin{cases} y' = 2x\sqrt{y-1} \\ y(1) = 1 \end{cases}$$

2) Homogeneous differential equations: They presented in the form: $y' = f\left(\frac{y}{x}\right)$

To solve this equation put the change of variable $z = \frac{y}{x}$

$$z = \frac{y}{x} \Rightarrow y = xz$$
 et $y' = z + xz'$.

$$y' = f\left(\frac{y}{x}\right) \Rightarrow z + xz' = f(z) \Rightarrow \frac{1}{f(z) - z}z' = \frac{1}{x}$$
 Equation with separate. variables.

1)
$$(E_1): (x^2 + y^2) - xyy' \neq 0$$
. Divide by x^2 .

2)
$$(E_2)$$
: $xy' = y + x \cos(\frac{y}{x})$

3)
$$(E_3)$$
:
$$\begin{cases} x^2y' - 2xy + y^2 = 0 \\ y(1) = 2 \end{cases}$$

3) Linear differential equations: (E): y' + a(x)y = b(x), a, b Two continuous functions on $I \subseteq \mathbb{R}$.

The lenear equation solved by two steps

1 Step: Find y_0 Solution of the equation (E_0) without the second member (b(x) = 0).

$$'(E_0): y' + a(x)y = 0 \Rightarrow \frac{y'}{y} = -a(x) \Rightarrow y_0 = k e^{-\int a(x)dx}$$

 2^{nd} Step: Find y_p the particular solution of (E).

Use the method of constant variation. k = k(x) (Function)

We have : $y = ke^{-\int a(x)dx} \Rightarrow y' = k'e^{-\int a(x)dx} - k a(x)e^{-\int a(x)dx}$

Replace in (E): $k'e^{-\int a(x)dx} = b(x) \Rightarrow k = \int b(x)e^{\int a(x)dx}dx$.

Then: $y_p = ke^{-\int a(x)dx} = e^{-\int a(x)dx} \int b(x)e^{\int a(x)dx} dx$.

The general solution of (E) is given by : $y_G = y_0 + y_p$.

$$y_G = k e^{-\int a(x)dx} + e^{-\int a(x)dx} \int b(x)e^{\int a(x)dx}dx.$$

1)
$$(E_1): xy' + 2y = \frac{1}{2}x^3$$

2)
$$(E_2)$$
: $\begin{cases} y' + 2y = e^x \\ y(0) = 1 \end{cases}$ $a(x) = 2, \ b(x) = e^x$

3)
$$(E_3): y' - \frac{y}{x} = x \arctan(x)$$
 $a(x) = -\frac{1}{x}$, $b(x) = x \arctan(x)$

4) Differential equation of Bernoulli:

They take the form: (E): $y' + a(x)y = b(x)y^n$, n > 1 (integer)

To solve the Bernoulli equation put the change of variable: $z = \frac{1}{y^{n-1}}$.

$$z = \frac{1}{y^{n-1}} \Rightarrow z' = \frac{1-n}{y^n} y'$$
 Replace in (E)

$$(E): \frac{1}{y^n}y' + \frac{a(x)}{y^{n-1}} = b(x) \Rightarrow \frac{1}{1-n}z' + a(x)z = b(x)$$
 is linear ODE.

Examples:

1)
$$(E_1): xy' + y = y^2 \ln(x)$$
 EDO of Bernoulli with $n = 2$.

2) (E_2) : $x^2y' + xy = y^5$ EDO of Bernoulli with n = 5.

5) Differential equation of Riccati:

They have the form : (E) : $y' + a(x)y^2 + b(x)y = c(x)$ with : a, b, and c three continuous functions on the interval $I \subseteq \mathbb{R}$.

To solve the Riccati equation, we need to know a particular solution y_1 , and put $y = y_1 + \frac{1}{z}$ $y = y_1 + \frac{1}{z}$, et $y' = y'_1 - \frac{1}{z^2}z'$ Replace in(E), we get the following linear equation

$$z' - (2a(x)y_1 + b(x))z = a(x).$$

1) (E):
$$\begin{cases} x^2y' = xy - x^2y^2 - 1 \\ y(1) = 2 \end{cases}$$
 with $y_1 = \frac{1}{x}$ is a particular solution.

2) (E):
$$y' = -2x + \left(1 + \frac{1}{x}\right)y + \frac{1}{x}y^2$$
, $y_0 = x$ The particular solution.

3) Différential equations of second order:

The différential equations of order 2 have the form : y'' = F(x, y, y') or F(x, y, y', y'') = 0

There is two principal types of differential equations of order 2:

Incomplete differential equations And Linear differential equations

1) Incomplete differential equations: Generally, There are three cases:

First case: (E): y'' = f(x)

To solve it integrate two times.

$$y'' = f(x) \Rightarrow y' = \int f(x)dx = F(x) + c$$
 F primitive de f.
 $\Rightarrow y = \int (F(x) + c)dx = G(x) + cx + k$, G primitive of F.

Example: $(E) : y'' = \frac{1}{1+x}$

second case: (E): y'' = f(x,y')

To solve it put the change : y' = z

 $y' = z \Rightarrow z' = f(x, z)$ EDO of order one.

Example: (E) xy'' - y' = 0

Third case: (E): y'' = f(y, y')

Example: (E): $y'' = \frac{y'^2}{\tan(y)}$

2) Linear differential equations: (E): a(x)y'' + b(x)y' + c(x)y = f(x)With a, b, c, and f continuous functions on the

Remark: In this chapter we interested a equations with a constant coefficients $(a, b, et \in \mathbb{R})$

3) Linear differential equations of second order with a constant coefficients:

$$(E): ay'' + by' + cy = f(x)$$

With a, b, c real numbers, $a \neq 0$, and f a continuous function on $I \subseteq \mathbb{R}$.

i) Differential equations of second order homogeneous: (without a second member)

$$(E_0)$$
: $ay'' + by' + cy = 0$, a,b,c des réels, et $a \neq 0$.

To solve it consider the solution $y = e^{rx}$ with $r \in \mathbb{C}$.

$$y=e^{rx}$$
, $y'=re^{rx}$, et $y''=r^2e^{rx}$ Replace in the equation (E_0) , we find $ar^2+br+c=0$.

We call the polynomial $P(r) = ar^2 + br + c$, a characteristic polynomial associated with equation (E_0) .

Find the general solution of the homogeneous equation (E_0) we distinguish three cases:

First case:
$$\Delta = b^2 - 4ac > 0$$
.

P have two real roots:
$$r_1 = \frac{-b + \sqrt{\Delta}}{2 a}$$
 , $r_2 = \frac{-b - \sqrt{\Delta}}{2 a}$

And the general solution is given by : $y_0 = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

1)
$$(E_0)$$
: $y'' + y' - 2y = 0$

2)
$$(E_0)$$
: $3y'' - 5y' + 2y = 0$

Second case : $\Delta = b^2 - 4ac = 0$.

P have one real root : $r_1 = r_2 = r = \frac{-b}{2a}$

The general solution given by: $y_0 = (C_1x + C_2)e^{rx}$.

Examples:

1)
$$(E_0)$$
: $y'' + 2y' + y = 0$

2)
$$(E_0)$$
: $9y'' - 6y' + y = 0$

Third case : $\Delta = b^2 - 4ac < 0$.

P have two complex roots : $r_1 = \alpha + i\beta$, $r_2 = \overline{r_1} = \alpha - i\beta$

The general solution given by $y_0 = (C_1 cos(\beta x) + C_2 sin(\beta x))e^{\alpha x}$

Examples:

1)
$$(E_0)$$
: $y'' - 2y' + 2y = 0$

2)
$$(E_0)$$
: $y'' + 2y = 0$

ii) Differential equation of second order with a second member:

(E):
$$ay'' + by' + cy = f(x)$$
 with a, b, c a real, and $a \neq 0$.

The equation (E) solved in two steps:

First step: Find y_0 Solution of homogeneous equation $(E_0): ay'' + by' + cy = 0$.

Second step: Find y_p particular solution of (E).

 $y_p = C_1 y_1 + C_2 y_2$ with y_1 and y_2 are solutions of the homogeneous equation (E_0) .

Determine C_1 et C_2 By the constant variation method.

Integrate C'_{1} and C'_{2} Solution of system : $\begin{cases} C'_{1}y_{1} + C'_{2}y_{2} = 0 \\ C'_{1}y'_{1} + C'_{2}y'_{2} = \frac{1}{a}f(x) \end{cases}$

Conclusion: $y_G = y_0 + y_p$ general solution of (E).

1)
$$(E): 2y'' - 3y' + y = e^x$$

2)
$$(E): y'' + y = \sin(x)$$

3) (E):
$$\begin{cases} 4y'' - 4y' + y = xe^{\frac{1}{2}x} \\ y(0) = 2, \ y'(0) = 1 \end{cases}$$

Remark: γ (Find γ_p by substitution)

- 1) If the second member $f(x) = Q(x)e^{sx}$ with: Q polynômial and $s \in \mathbb{R}$. we distinguish three cases :
- i) If s is not root of P(r). Then : $y_p = R(x)e^{sx}$, R polynômial and $d^\circ R = d^\circ Q$
- ii) If s is simple root of P(r). Then : $y_p = R(x)e^{sx}$ with $d^{\circ}R = d^{\circ}Q + 1$

Or
$$y_p = x R(x)e^{sx}$$
 with $d^{\circ}R = d^{\circ}Q$

iii) If s is double root of
$$P(r)$$
. Then: $y_p = R(x)e^{sx}$ with $d^\circ R = d^\circ Q + 2$

Or
$$y_p = x^2 R(x)e^{sx}$$
 avec $d^{\circ}R = d^{\circ}Q$

- 2) If the second member $f(x) = A \cos(\beta x) + B \sin(\beta x)$ we distinguish two cases :
- i) If βi is not root of P(r). Then : $y_p = A_1 \cos(\beta x) + B_1 \sin(\beta x)$
- ii) If βi is a root of P(r). Then : $y_p = x(A_1 \cos(\beta x) + B_1 \sin(\beta x))$.

1)
$$(E): y'' - 3y' + 2y = (2x^2 - 3)e^{-x}$$

2) (E):
$$y'' + 4y = 3\sin(2x)$$