Centre universitaire de Mila Institut des Sciences et de la Technologie Département de Mathématique et Informatique Classe Master 1 : 12A

Série de Td N°2

Data Mining – Rappels sur les statistiques – 2022/2023 – R.M : Ali LALOUCI

Exercice 1 (Statistique bivarié)

La prévision météorologique est une science en pleine évolution. Elle a pour objectif de prédire un ensemble de paramètres comme la température, la pression, la pluviométrie etc... L'objectif du présent exercice est la recherche d'une corrélation entre deux paramètres à savoir la température (notée T et mesurée en degré Celsius) etla pluviométrie (notée P et mesurée en mm). Le tableau ci-dessous donne les moyennes par mois de ces deux paramètres.

Mois	Septembre	Octobre	Novembre	Décembre	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août
Pluviométrie (mm)	13	23	49	49	50	64	79	48	40	10	5	6
Température (°C)	23	17	14	10	10	11	13	15	17	23	27	28

- 1) Identifier Population, individu, caractères et modalités
- 2) Tracer le diagramme différentiel de P (prendre les effectifs en ordonnée)
- 3) Représentez graphiquement le diagramme des fréquences cumulées de P
- 4) Calculer la moyenne et l'écart type des variables statistiques P et T
- 5) Dessiner le nuage de points
- 6) Calculer la covariance entre P et P
- 7) Calculer le coefficient de corrélation.

Exercice 2

Un article en stock fait l'objet d'une demande journalière *X* dont la loi de probabilité est donnée par le tableau

X	0	1	2	3	4	5	6
$P\left([X=x]\right)$	0,10	0,15	0,20	0,25	0,15	0,10	0,05

- 1) Déterminer la fonction de masse et représenter graphiquement cette fonction.
- 2) Déterminer et donner la représentation graphique de la fonction de répartition de la variable aléatoire *X*.
- 3) Trouver la probabilité qu'une demande dépasse 4.
- 4) Trouver la probabilité qu'une demande soit inférieure à 2.
- 5) Calcul l'espérance, la variance et l'écart-type de la variable aléatoire X, puis interpréter les résultats
- 6) Pour quelles valeurs de x peut-on écrire $P(X \le x) = 0.85$?
- 7) Pour quelles valeurs de x peut-on écrire P(X > x) = 0.55 ?

Exercice 3

Soit la densité de variable aléatoire *X* :

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2 \\ 0, & ailleurs \end{cases}$$

- 1) Vérifier que f est bien une densité et la représenter.
- 2) Calculer la fonction de répartition de X.
- 3) Calculer l'espérance et la variance de X.
- 4) Calculer P(X>1), P(X<1), P(12<X<32).