Ministry of Higher Education and Scientific Research
University of Abdelhafid Boussouf - Mila

Institute of Mathematics and Computer Science
Department of Computer Science

Master 2 12A — Big Data

2025/2026

TD 3 - Introduction to Apache Spark

Objectives
Understand how Spark works compared to Hadoop, the concept of Resilient Distributed Dataset (RDD)s, and
the logic of transformations and actions in Spark.

Introduction

In previous sessions, we studied Hadoop and the MapReduce model, which processes data by reading it from
disk for each operation. While this approach is reliable, it can be slow because it constantly writes and reads
intermediate results.

To overcome these limitations, Apache Spark was created. Spark keeps most data in memory, allowing much
faster computations, especially for iterative algorithms and real-time analytics.

Spark introduces a new concept: the RDD: a distributed collection of data that can be processed in parallel
across multiple nodes.

Part 1 — Concept Review

Before diving into RDDs and transformations, let's compare Spark to Hadoop and ensure we understand the
new terminology.

Q1. Compare Hadoop MapReduce and Apache Spark according to the following aspects:

Aspect Hadoop MapReduce Apache Spark

Execution Model

Speed and Performance

Memory Management

Ease of Programming

Q2. Complete the following sentences carefully:

1. Spark computations are based on a fundamental structure called the , which stands for
. It represents a distributed dataset that can be manipulated through transformations and

actions.

2. Unlike traditional programming models, Spark uses evaluation, meaning that
transformations are not executed immediately but are only computed when an is called.

3. The series of transformations applied to an RDD form a logical plan called a graph, which
Spark uses to optimize and recover data in case of failure.

4. When Spark runs on a cluster, data is divided into , and each partition is processed in

on different nodes.



Part 2 — Understanding RDD Transformations
RDDs support two main categories of operations:

¢ Transformations: operations that create a new RDD from an existing one (e.g., map, filter, flatMap,
reduceByKey).

e Actions: operations that trigger computation and return a result to the driver program (e.g., collect,
count, saveAsTextFile).

Analyze the following code step by step:

rdd = sc.parallelize([1, 2, 3, 4, 5, 6])
rdd2 = rdd.map(lambda x: x * 2)

rdd3 = rdd2.filter(lambda x: x > 6)
result = rdd3.collect()

Q3. Draw the data flow diagram (lineage graph) showing how data moves from one RDD to another.
Q4. Determine what happens at each stage (contents of rdd2, rdd3, result).
Q5. Identify transformations vs. actions and explain why only actions trigger execution.

[l Part 3 — Working with Key-Value Pairs

Many real-world problems deal with key-value data, such as word counts or aggregating sales per region.
Spark provides pair RDDs that allow us to apply transformations like reduceByKey or groupByKey.

data = sc.parallelize(['apple', 'banana‘', 'apple', 'orange', 'banana', 'apple'])
pairs = data.map(lambda x: (x, 1))

counts = pairs.reduceByKey(lambda a, b: a + b)

output = counts.collect()

Q6. Write the intermediate contents of pairs.

Q7. Explain how reduceByKey works.

Q8. Predict the final output of output.

Bonus: Explain RDD lineage and how Spark recovers lost partitions.

{0 Part 4 — Reflection and Discussion

Q9. Why does Spark use lazy evaluation?

Q10. Two advantages of Spark’s lineage graph compared to Hadoop’s intermediate files.
Q11. When might Hadoop MapReduce be preferable to Spark?




