CHAPTER 4: Digestive Systems and Nutrition

I. Invertebrate Digestive Systems

Animals have evolved different types of **digestive systems** to break down the different types of **food** they consume. **Invertebrates** can be classified as those that use **intracellular digestion** and those with **extracellular digestion**.

1.1. Intracellular Digestion

The simplest example of digestion is **intracellular digestion**, which takes place in a **gastrovascular cavity** with only **one opening**. Most animals with **soft bodies** use this type of digestion, including **Platyhelminthes** (**flatworms**), **Ctenophora** (**comb jellies**), and **Cnidaria** (**coral**, **jellyfish**, and **sea anemones**). The **gastrovascular cavity** of these organisms contains one **opening** which serves as both a **mouth** and an **anus**.

Digestion in simple animals occurs through a series of basic steps. Food is first **ingested** through the mouth into the **gastrovascular cavity**, where **enzymes** are secreted to partially break it down. Specialized cells then **engulf food particles** by phagocytosis, forming food vacuoles that fuse with **lysosomes** for intracellular digestion. The resulting nutrients are **absorbed** into the cytoplasm for energy and growth, while **undigested wastes** are expelled back through the mouth/anus by exocytosis.

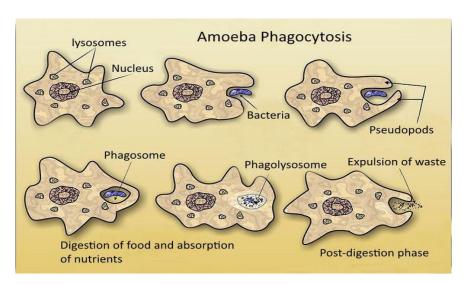
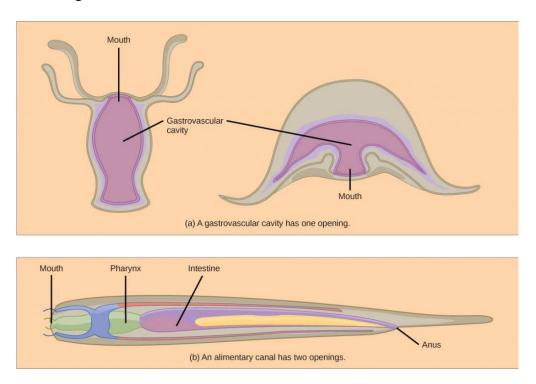



Fig. Process Of Nutrition In Amoeba

1.2. Extracellular Digestion

The **alimentary canal** is a more advanced digestive system than the gastrovascular cavity and performs **extracellular digestion**. It is a **complete and compartmentalized tube** that extends from the **mouth** to the **anus**, allowing food to pass in one direction and enabling specialized regions for different digestive functions. Most invertebrates such as **segmented worms (earthworms)**, **arthropods (grasshoppers)**, and **arachnids (spiders)** possess this type of system.

In extracellular digestion, food is broken down outside the cells within the digestive cavity or alimentary canal. Food is first ingested through the mouth, passes through the esophagus, and is stored in the crop, where it softens. It then enters the gizzard, where muscular grinding reduces it into smaller particles. Digestive enzymes secreted into the gut break down complex molecules into simpler nutrients, which are then absorbed through the intestinal walls into body fluids for cellular use. Finally, undigested material is compacted and eliminated through the anus.

Figure 1. a) A gastrovascular cavity has a single opening through which food is ingested and waste is excreted, as shown in this hydra and in this jellyfish medusa. (b) An alimentary canal has two openings: a mouth for ingesting food, and an anus for eliminating waste, as shown in this nematode.

Key Points

- The simplest invertebrate **digestive system** in a **gastrovascular cavity** consists of only **one opening** that serves as both the **mouth** for taking in **food** and the **anus** for **excretion**.
- The **gastrovascular cavity** has **cells** lining it that secrete **digestive enzymes** to break down the **food particles** through a process called **intracellular digestion**.
- An alimentary canal is a long tube that begins with a mouth, then goes to the esophagus, then to the crop, gizzard, intestine, and finally, to an anus; this is used in the process of extracellular digestion.
- Most **invertebrates** use **extracellular digestion**; however, there are a few **phyla** that can use both **intracellular** and **extracellular digestion**. Examples include **Porifera**, **Cnidaria**, and **Platyhelminthes**, in which digestion begins **extracellularly** in a cavity or canal and is completed **intracellularly** within specialized cells.

II. Digestive system in Vertebrates

All vertebrates (fish, amphibians, reptiles, birds, mammals) have a digestive system adapted to their diet (herbivores, carnivores, omnivores). The system is generally **tubular** (alimentary canal) with accessory glands, but there are **structural differences** among groups.

2.1. General Structure of Vertebrate Digestive System

o Mouth and Oral Cavity

- o Teeth (shape depends on diet: sharp in carnivores, flat in herbivores).
- \circ Salivary glands \rightarrow secrete enzymes (amylase in some species).
- \circ Tongue \rightarrow helps in manipulation and swallowing.

Pharynx and Esophagus

- Passage for food.
- Swallowing involves muscular contractions.

o Stomach

- Stores and mixes food.
- o Secretes gastric juice (HCl + pepsin) \rightarrow protein digestion.
- May be simple (monogastric, e.g., humans, carnivores) or complex (ruminants like cows with 4 chambers).

o Small Intestine

- Major site of digestion and absorption.
- Enzymes from pancreas (amylases, proteases, lipases).
- \circ Bile from liver \rightarrow emulsifies fats.

o Villi and microvilli → increase surface area for absorption.

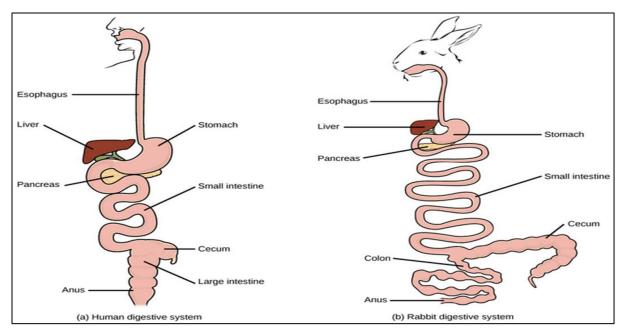
Large Intestine

- Absorbs water and salts.
- o Houses symbiotic bacteria (important in herbivores for cellulose digestion).
- Forms and stores feces.

Anus/ Cloaca

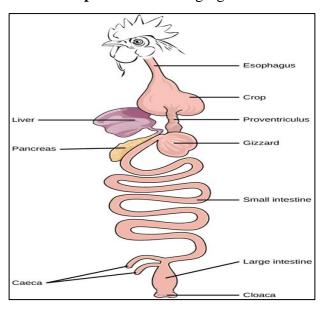
- o Expels undigested material.
- o Birds, reptiles, and amphibians have a **cloaca** (common opening for digestive, urinary, reproductive tracts).

2.2. Evolutionary Adaptations of Vertebrate Digestive Systems


- Vertebrates have evolved complex digestive systems adapted to their dietary needs.
 - o Some have single-chambered stomachs.
 - o Others have multi-chambered stomachs.
 - o Birds have unique systems adapted for eating **un-masticated food**.

1. Monogastric Digestive System (Single-Chambered Stomach)

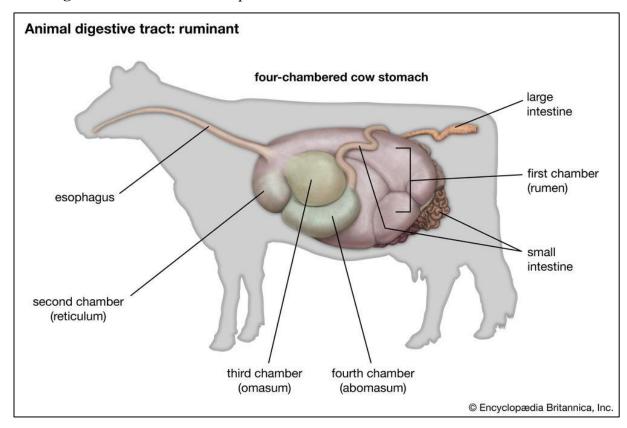
• Found in humans and many animals.


Process:

- o **Mouth** → Teeth masticate food, saliva enzymes begin chemical digestion.
- o **Esophagus** → Moves food to stomach by peristalsis.
- \circ **Stomach** \rightarrow Very acidic (pH 1.5–2.5), secretes gastric juices and enzymes to break down proteins.
- o **Small Intestine** → Pancreas, liver, and intestinal enzymes complete digestion; nutrients absorbed into bloodstream.
- o Large Intestine → Absorbs water, compacts waste into feces.
- \circ **Rectum/Anus** \rightarrow Excretion of feces.

2. Avian Digestive System (Birds)

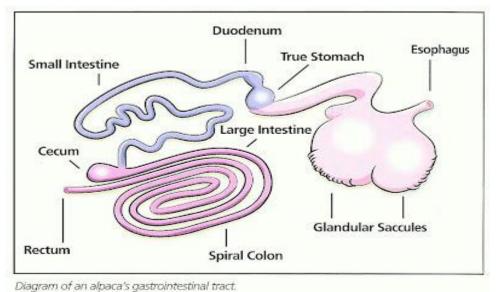
- Adaptation: **No teeth** → food is swallowed whole.
- Birds have **high metabolic rates** (need efficient digestion).
- Specialized Structures:
 - o **Beak** → Adapted for diet (seeds, insects, fruits, nuts).
 - o **Proventriculus** → Secretes gastric juices.
 - o **Gizzard** → Stores food, grinds mechanically (sometimes with stones).
 - o Intestine \rightarrow Site of chemical digestion & absorption.
 - o Cloaca → Common opening for waste excretion.
- Some undigested food forms **pellets** that are regurgitated.


3. Ruminant Digestive System (Four-Chambered Stomach)

- Found in **cows**, **sheep**, **goats** (herbivores, high cellulose diet).
- Special Features:
 - No upper incisors \rightarrow use lower teeth, tongue, lips for chewing.
- Four Chambers:
- 1. **Rumen** \rightarrow fermentation vat with microbes.
- 2. **Reticulum** \rightarrow traps large particles; regurgitation for re-chewing ("cud").
- 3. **Omasum** \rightarrow absorbs water and nutrients.
- 4. **Abomasum** (true stomach) \rightarrow secretes gastric juices like monogastric stomach.

Fermentation produces gases that must be released (eructation).

Small intestine → nutrient absorption.


Large intestine \rightarrow water absorption and waste elimination.

4. Pseudo-ruminant Digestive System (Three-Chambered Stomach)

- Found in camels, alpacas.
- Eat large amounts of roughage and plant material.
- Differences from ruminants:
 - o Three chambers (no rumen).

- Have **omasum**, **reticulum**, **abomasum**.
- \circ Large cecum \rightarrow houses microorganisms to ferment and digest cellulose.
- Fermentation occurs mainly in the **cecum**, not a rumen.

2. Enzymatic Digestion and Absorption

1. Definition

- **Enzymatic digestion** is the breakdown of large, complex food molecules into smaller, absorbable units by the action of **digestive enzymes**.
- **Absorption** is the process by which the end products of digestion pass through the intestinal lining into the **blood** or **lymph** to be transported to body cells.

2. Stages of Enzymatic Digestion

Digestive Organ	Enzymes Released	Function		
Mouth	Salivary amylase	Begins digestion of starch into maltose.		
Stomach	Pepsin (from pepsinogen activated by HCl)	Begins protein digestion into peptides.		
Pancreas (to	Pancreatic amylase,	Continues carbohydrate digestion, breaks		
small intestine)	Trypsin, Chymotrypsin,	proteins into smaller peptides, and digests		
	Lipase	fats into fatty acids + glycerol.		

Small	Intestine	Maltase,	Sucrase,	Final	breakdown	of	carbohydra	tes	to
(intestina	al brush	Lactase, Pept	idases	mono	saccharides	and	proteins to	ami	no
border)				acids.					

3. Enzymatic Digestion of Nutrients

Carbohydrates

- **Starch** → **Maltose** (by salivary & pancreatic amylase)
- Maltose, Sucrose, Lactose → Glucose, Fructose, Galactose (by intestinal enzymes)

Proteins

- **Proteins** → **Polypeptides** (by pepsin in the stomach)
- Polypeptides → Amino acids (by trypsin, chymotrypsin, and peptidases in the small intestine)

Fats (Lipids)

- **Bile** (from the liver) **emulsifies fats** \rightarrow breaks them into tiny droplets.
- Lipase converts them into fatty acids + glycerol.

4. Absorption in the Small Intestine

- Occurs mainly in the **jejunum and ileum**.
- The inner surface of the small intestine has **villi** and **microvilli**, increasing the **surface area** for absorption.

Nutrient	Absorbed Form	Absorption Location	Transported By
Carbohydrates	Monosaccharides (e.g., glucose)	Small intestine	Enters bloodstream
Proteins	Amino acids	Small intestine	Enters bloodstream
Fats	Fatty acids + glycerol	Small intestine	Enters lymphatic system via lacteals