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Sampling and Estimation

Sampling and estimation are fundamental in inferential statistics. They allow us to draw
conclusions about a large population based on the analysis of a smaller representative subset
(sample). In this chapter, we introduce the essential notions of sampling, random sampling
distributions, and estimation of unknown parameters.

Sampling1

3.1.1 Concept of Sampling

Definition 1.1

Consider a population Ω of size N . A sample is a subset of this population. A sample of size
n is thus a list of n individuals (ω1, ω2, ..., ωn) drawn from the parent population.

Example 1.1

Consider a population composed of 5 students. We are interested in the weekly time devoted
by each student to studying statistics.

Ω = {A,B,C,D,E}, N = 5

Student Study Time (h)
A 7
B 3
C 6
D 10
E 4

Definition 1.2

Sampling is the process of selecting samples. The ratio t of the sample size n to the population
size N from which it is drawn is called the sampling rate or sampling fraction, i.e.

t =
n

N

Example 1.2

If we draw samples of size 2, then t =
2

5
(see Example 1.1).
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Definition 1.3

A random sample is a selection of n individuals from a parent population such that all
possible combinations of n individuals have the same probability of being selected. Other
types of sampling exist, but we will focus exclusively on random sampling.

Remark

We aim to describe a qualitative or quantitative characteristic C of a population Ω by studying
the results obtained from a sample of size n.

Example 1.3

1. For a given population, we may study quantitative characteristics such as weight or
height.

2. For a given population, we may study qualitative characteristics such as eye color or hair
color.

3. In the initial example, the characteristic studied is the weekly time devoted to studying
statistics.

Definition 1.4

Let C be a quantitative characteristic defined on a parent population Ω. C is the realization
of a random variable X defined on Ω:

X : Ω → R, ωi 7→ X(ωi) = xi

A sample of values of X is the list of observed values (x1, x2, ..., xn) taken by X on a sample
(ω1, ..., ωn) of the population Ω. The coordinates can be regarded as realizations of a random
vector (X1, ..., Xn) called an n-sample of X, where the Xi are independent and identically
distributed (i.i.d.) random variables with the same distribution as X.

Definition 1.5

Any random variable that can be expressed in terms of the random variables X1, ..., Xn is called
a statistic.

Example 1.4

Xi and X =
1

n

n∑
i=1

Xi are examples of statistics.

Remark

If we extract several samples of the same size n, the results we obtain will vary depending
on the sample considered. We call this variability sampling fluctuations. To make reliable
inferences about the parent population, we must study the probability laws governing these
fluctuations.
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3.1.2 Sampling Distributions

Sample Mean and Sample Variance

Definition 1.6

Consider a population Ω whose elements possess a quantitative characteristic C that is the
realization of a random variable X with expectation µ and standard deviation σ. Assume the
population is infinite or that sampling is done with replacement.
We draw a sample (X1, ..., Xn) from X, giving observed values (x1, ..., xn). The sample mean
is given by:

x =
x1 + x2 + ...+ xn

n
=

1

n

n∑
i=1

xi

The corresponding random variable is:

X =
1

n

n∑
i=1

Xi

Similarly, the sample variance is:

v =
1

n

n∑
i=1

(xi − x)2

and the associated random variable:

V =
1

n

n∑
i=1

(Xi −X)2

We define the random variable S2, called the unbiased sample variance, as:

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
n

n− 1
V

3.1.3 Sample Proportion
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Definition 1.7

Sometimes, the characteristic to be estimated is not quantitative but qualitative. In this case,
we seek the proportion p of individuals in the population possessing that characteristic. The
proportion p is estimated from the results obtained in a sample of size n.
The observed proportion f in a sample is the realization of a random variable F , representing
the frequency of appearance of this characteristic in the sample. F is called the sample
proportion or statistical frequency:

F =
K

n

where K is the random variable counting the number of occurrences of the characteristic in
the sample of size n. By definition, K ∼ B(n, p), so that:

E(K) = np, V ar(K) = npq with q = 1− p.

Therefore,

E(F ) = p, V ar(F ) =
pq

n
.

Remark

For n ≥ 30, with np ≥ 15 and nq ≥ 15, F can be approximated by a normal distribution:

F ∼ N

(
p,

√
pq

n

)
.

Estimation2

3.2.1 Estimators

Definition 2.1

To estimate a parameter means to find an approximate value based on the results obtained
from a sample.
An estimator θ̂ of the unknown parameter θ is a function that assigns to each set of observa-
tions (x1, ..., xn) an estimated value θ̂:

θ̂ : (x1, ..., xn) 7−→ θ̂ = f(x1, ..., xn)

Hence, θ̂ is a random variable. We can compute its expectation E(θ̂) and variance V ar(θ̂).
These quantities measure the quality of the estimator for the parameter θ.

Example 2.1

Estimating the average height of a population from the empirical mean of a sample taken from
that population.
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Definition 2.2

An estimator θ̂ is said to be unbiased if the mean of its sampling distribution equals the true
value of the parameter θ:

E(θ̂) = θ.

Otherwise, it is said to be biased.
The bias of an estimator is defined as:

Bias(θ̂) = E(θ̂)− θ.

Remark

The absence of bias does not necessarily imply that an estimator is efficient. A parameter can
have multiple unbiased estimators. In such cases, efficiency is compared using their variances:
an estimator with smaller variance provides estimates closer to the true value of θ.

Definition 2.3

An unbiased estimator θ̂1 is said to be efficient if, for any other unbiased estimator θ̂2:

E(θ̂1) = E(θ̂2) = θ and V ar(θ̂1) < V ar(θ̂2).

Definition 2.4

An estimator θ̂ is said to be consistent (or convergent) if its distribution tends to concentrate
around the true value θ as the sample size increases, i.e.:

lim
n→+∞

V ar(θ̂) = 0.

Common Estimators

(A) Quantitative Characteristic Let X be a random variable with mean µ and standard devi-
ation σ defined on a parent population Ω, and let (X1, ..., Xn) be a random sample.

Properties

1. X =
1

n

n∑
i=1

Xi is an unbiased and consistent estimator of µ (E(X) = µ).

2. V =
1

n

n∑
i=1

(Xi −X)2 is a biased estimator of σ2.

3. S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
n

n− 1
V is an unbiased and consistent estimator of σ2.

(B) Qualitative Characteristic
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Property

For a qualitative characteristic with population proportion p, the sample proportion F is an
unbiased and consistent estimator of p.

3.2.2 Confidence Intervals

Definition 2.5

Rather than determining a single approximate value of a parameter θ, we may seek an interval
that contains the true value of θ with a specified probability.
Let X be a random variable whose distribution depends on the parameter θ. A confidence
interval of risk α for θ is defined by random variables An and Bn such that:

P (An ≤ θ ≤ Bn) = 1− α.

The realized interval [a, b] is obtained from a sample (x1, ..., xn) as:

a = An(x1, ..., xn), b = Bn(x1, ..., xn).

Remarks

1. The quantity 1 − α is called the confidence level of the interval [a, b], i.e. P (a ≤ θ ≤
b) = 1− α.

2. In practice, we often have only one sample that provides a single confidence interval [a, b].

3. The parameter to be estimated may be a mean, a variance (for quantitative variables),
or a proportion (for qualitative ones).

Confidence Interval for a Mean

We consider the case where X follows a normal distribution N(µ, σ), or when the sample size is large
(n > 30) so that X approximately follows the same law.

Given a sample (x1, ..., xn), we define:

m =
x1 + ...+ xn

n
, s2 =

1

n− 1

n∑
i=1

(xi −m)2.

(A) Case σ known

IC =

[
m− t1−α/2

σ√
n
; m+ t1−α/2

σ√
n

]

(B) Case σ unknown

IC =

[
m− t1−α/2, n−1

s√
n
; m+ t1−α/2, n−1

s√
n

]

where t1−α/2, n−1 is the quantile of order 1 − α

2
of Student’s t distribution with n − 1 degrees of

freedom.
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Remark

If n > 30, then t1−α/2, n−1 ≈ t1−α/2.

Confidence Interval for a Variance

(A) Case µ known

IC =

[
nv

χ2
1−α/2(n)

;
nv

χ2
α/2(n)

]

where v =
1

n

n∑
i=1

(xi − µ)2, and χ2
1−α/2(n) and χ2

α/2(n) are the chi-squared quantiles of orders 1− α

2

and
α

2
respectively.

(B) Case µ unknown

IC =

[
(n− 1)s2

χ2
1−α/2(n− 1)

;
(n− 1)s2

χ2
α/2(n− 1)

]

Remark

If n > 30, we can approximate:

χ2
α(n− 1) ≈ 1

2

(
tα +

√
2n− 3

)2
.

Hence:

IC =

[
2(n− 1)s2

(t1−α/2 +
√
2n− 3)2

;
2(n− 1)s2

(tα/2 +
√
2n− 3)2

]
and the symmetry of the standard normal law ensures that tα/2 = −t1−α/2.

Confidence Interval for a Proportion

From the approximation F ∼ N(p,

√
pq

n
) with q = 1− p, we deduce:

IC =

[
f − t1−α/2

√
f(1− f)

n
; f + t1−α/2

√
f(1− f)

n

]

where f is the sample proportion.


