Module: Electrochimie

Série Nº: 02

Exercice 1:

On ajoute 5 g de KCl à une solution préparée par l'ajout de 5 g de FeCl₃ à 100 cm³ d'eau. Calculer la force ionique de la solution.

Exercice 2:

Déterminer la force ionique d'une solution contenant 1 mole de HCl et 0,1 mole de CaCl₂.

Données: Vsol=1L

Exercice 3.

La force ionique d'une solution de NaCl est égale à 0.24 mol/l, quelle est sa concentration, et quelle est la concentration d'une solution de Na₂SO₄ qui a la même force ionique.

Exercice4.

En utilisant la loi de Debye-Hückel, calculer la valeur de $\gamma\pm$ pour des solutions 10^{-4} et 10^{-3} mol/l de HCl, CaCl₂ et ZnSO₄.

Exercice5:

Démonter la relation suivante : utilisé la 2^{eme} loi de Néotène.

 $d = \mathbf{u}_i \cdot \mathbf{U} / \mathbf{v}$

Exercice 06:

La mobilité ionique des ions H_3O^+ et Cl^- dans une solution d'acide Chlorhydrique de concentration 0.1 mol/l à 25 °C est respectivement 365.10^{-5} et 79.10^{-5} cm².V⁻¹.S⁻¹. Calculer la conductivité spécifique $\delta_{H_3O^+}$ et δ_{Cl^-} à 0 °C et le nombre de transport des ions H_3O^+ et Cl^- dans la solution.