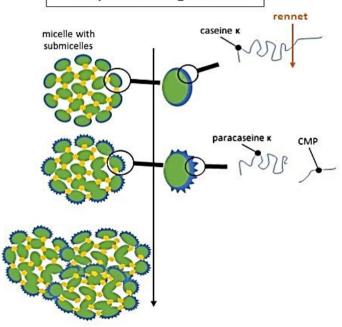
lactose electro-statique repulsion micelle repulsion


Acid Coagulation

- Lactic acid bacteria (e.g., *Lactobacillus*, *Streptococcus*) ferment lactose into lactic acid.
- This fermentation gradually lowers the milk pH to about **4.6**, which corresponds to the isoelectric point (pI) of caseins.
- In fresh milk, casein micelles are stable due to:
- \circ the κ -casein coating that provides negative charges on their surface,
- o and electrostatic repulsion between micelles (red arrows in the figure).
- As acidity increases (pH decreases):
- o negative charges are neutralized,
- o colloidal calcium phosphate dissolves,
- o electrostatic repulsion disappears.
 - → Micelles begin to aggregate into a continuous three-dimensional network, forming the acid gel.

This mechanism underlies the production of: Yogurt, leben, raïb, and acid casein.

The resulting gel is smooth and cohesive, retaining both water and minerals within its structure.

Enzymatic coagulation

Enzymatic Coagulation

- Triggered by rennet, an enzyme preparation containing chymosin.
- Chymosin specifically cleaves κ-casein at the Phe105–Met106 peptide bond.
- κ-casein, located on the micelle surface, acts as **a** protective "hairy layer" providing steric and electrostatic stability.
- After enzymatic cleavage:
 - the hydrophilic fragment (the *caseinomacropeptide*, CMP) is released into the serum,
 - while the hydrophobic fragment ($para-\kappa$ -casein) remains attached to the micelle.
- Without the stabilizing κ -casein layer, micelles lose their repulsive forces and, in the presence of Ca²⁺ ions, aggregate into a dense curd network.

This mechanism is the basis of cheese manufacture:

- 1. Enzymatic coagulation by rennet,
- 2. Cutting and draining of the curd,
- 3. Separation of the whey (liquid phase).

The resulting gel is firm, elastic, and cohesive, unlike the softer acid gel.