Year: 2025/2026

Module: Computer Architecture

Directed Work N° 03

Exercise1:

1- Indicate data hazards and their type for each of the following two sequences of instructions.

a. I1: lw \$t1, 40(\$t0)

I2: add \$t0, \$t2,\$t2

I3: sw \$t0, 50(\$t1)

b. I1: lw \$t1, -8(\$t1)

I2: sw \$t1, -8(\$t1)

I3: add \$t1, \$t1,\$t1

- 2- Assume there is no forwarding in this pipelined processor. Add nop instructions to eliminate hazards
- 3- Assume there is full forwarding. Add nop instructions to eliminate hazards

Exercise2:

Find the hazards in this code segment and	lw \$t1, 0(\$t0)
reorder the instructions to avoid any pipeline	lw \$t2, 4(\$t0)
stalls.	add \$t3, \$t1,\$t2
	sw \$t3, 12(\$t0)
	lw \$t4, 8(\$t0)
	add \$t5, \$t1,\$t4
	sw \$t5, 16(\$t0)

Exercise3:

Identify all the RAW data dependencies in the following	add \$3, \$4, \$2
code. Which dependencies are data hazards that will be	sub \$5, \$3, \$1
resolved by forwarding? Which dependencies are data	lw \$6, 200(\$3)
hazards that will cause a stall? Show the forwarding paths	, , , ,
and stalled cycles if any.	add \$7, \$3, \$6

Exercise4:

For this problem, assume that all branches are perfectly predicted (this eliminates all control hazards). If we only have one memory (for both instructions and data), there is a structural hazard every time. What is the total execution time of this instruction sequence in the five-stage pipeline? We have seen that data hazards can be eliminated by adding nops to the code. Can you do the same with this structural hazard? Why?

a.	lw \$1,40(\$6)	b. lw \$5,-16(\$5)
	beq \$2, \$0, Label ; assume \$2=\$0	sw \$4, -16(\$4)
	sw \$2, 50(\$2)	lw \$3,-20(\$4)
Label:	add \$2, \$3, \$4	beq \$2, \$0, Label ;assume \$2!=\$0
	sw \$3, 50(\$4)	add \$5, \$1, \$4