TD Béton Précontraint

Exercice 1:

Une poutre en béton est soumise à une précontrainte $P=100\,\mathrm{kN}$, appliquée lorsque la résistance en compression atteint 25 MPa. Pour un béton de résistance caractéristique $f_{c28}=35\,\mathrm{MPa}$, on demande de :

- 1. Estimer le délai (en heures) nécessaire pour atteindre 25 MPa.
- 2. Déterminer la résistance en compression aux âges j = 3.7 et 90 jours.
- 3. Évaluer la résistance en traction pour ces mêmes âges.
- 4. Calculer le module de déformation longitudinal instantané à j = 3,7 et 90 jours.

Exercice 2:

Une poutre en béton de section rectangulaire $(250 \times 500 \, \text{mm}^2)$ est soumise à une précontrainte centrée. Deux cas sont considérés:

- **Acier doux** : Contrainte de traction à la mise en tension $\sigma_{s0} = 300$ MPa.
- Acier haute résistance : Contrainte de traction à la mise en tension $\sigma_{p0} = 1500 \, \mathrm{MPa}$.

La force de précontrainte initiale est $P_0 = 400$ kN. On donne : $E_s = E_p = 200\,000$ MPa, $E_b = 27\,500$ MPa, et $\varepsilon_d = 5 \times 10^{-4}$ (la déformation due au retrait et au fluage).

On demande de :

- 1. Calculer la déformation unitaire résiduelle (allongement relatif) dans l'acier après raccourcissement du béton.
- 2. Déterminer la force de précontrainte résiduelle (P) après prise en compte du raccourcissement du béton pour chaque type d'acier.

Exercice 3:

On considère un béton mis en œuvre dans un climat tempéré sec (Zone B). Les caractéristiques sont :

- Résistance à la compression à 28 jours : $f_{c28} = 40$ MPa.
- Âge du béton lors de la mise en charge : $t_1 = 7$ jours.
- Contraintes appliquées : $\sigma_1 = 12$ MPa.
- Rayon moyen de la pièce : $r_m = 6$ cm.

On demande de:

- 1. Estimer la déformation de retrait finale ε_r correspondant à la zone climatique.
- 2. Calculer la déformation instantanée ε_i sous l'effet de σ_1 .
- 3. Déterminer la déformation de fluage ε_f après 180 jours de chargement.

Exercice 4:

Un toron est constitué de 19 fils identiques de diamètre $d=7\,\mathrm{mm}$, chacun ayant une résistance à la rupture $f_{pu}=1750\,\mathrm{MPa}$.

- 1. Vérifier le nombre de fils de toron
- 2. Calculer la section totale en acier du toron.
- 3. Estimer la charge de rupture maximale théorique du toron.

Exercice 5:

Un béton de résistance $f_{c28} = 35$ MPa est tendu par un câble à j = 2 jours, avec une force de précontrainte P = 500 kN. On considère :

- Loi de maturation du béton (Eq. 2.1) pour f_{cj} .
- Module d'élasticité du béton $E_j = 11000 f_{cj}^{1/3}$.
- Section de béton $A_c = 0.20 \,\mathrm{m}^2$.

On demande de:

- 1. Calculer la résistance en compression du béton à j = 2 jours.
- 2. Vérifier si le béton peut supporter l'effort de précontrainte sans fissuration.
- 3. Discuter l'évolution des contraintes lorsque le béton atteint 28 jours.