TP n° 2

Caractérisation des polyphénols et activité anti-oxydante de plantes médicinales

1. Introduction

Ce TP utilise des **réactions colorimétriques spécifiques** pour quantifier et caractériser les composés bioactifs dans les plantes :

- 1. **Réaction Folin-Ciocalteu** : Réduction des ions phosphomolybdiques/phosphotungstiques par les groupements phénoliques, produisant un complexe bleu mesurable à 765 nm.
- 2. **Test DPPH**: Capacité des antioxydants à donner un électron au radical libre DPPH•, provoquant une décoloration proportionnelle à l'activité antioxydante.
- 3. **Test FeCl**₃: Formation de complexes colorés entre les ions Fe³⁺ et les groupements phénoliques.

2. Objectif

- Maîtriser les techniques d'extraction solide-liquide des composés phénoliques.
- Utiliser correctement le spectrophotomètre pour des dosages quantitatifs.
- Acquérir les compétences nécessaires à l'analyse quantitative des composés bioactifs.
- Etablir des corrélations entre composition et activité biologique.

3. Matériel et méthodes

3.1. Equipments et produits

- Spectrophotomètre UV-visible.
- Bain-marie réglable à 40°C.
- Balance analytique (précision 0.01 g).
- Minuterie/chronomètre.
- Tubes à essai, fioles jaugées et béchers.
- Cuvettes spectrophotométrique.
- Pipettes graduées 1, 5, 10 ml et pipettes automatiques 100-1000 μl.
- Entonnoirs en verre.
- Papier filtre.
- Éthanol 70%.
- Réactif Folin-Ciocalteu.
- DPPH.
- Carbonate de sodium.
- Acide gallique.
- Acide ascorbique.
- Chlorure ferrique.
- Méthanol.
- Thym séché (Thymus vulgaris).
- Romarin séché (Rosmarinus officinalis).

Méthodes de Caractérisation des Substances Bioactives d'origine Microbienne

Année Universitaire : 2025-2026

3.2. Protocole expérimentale

ÉTAPE 1: PRÉPARATION

1.1. Solutions mères

Solution Folin-Ciocalteu diluée 1:10

- Prélever 5 ml de Folin concentré avec pipette graduée.
- Verser dans fiole jaugée 50 ml.
- Compléter au trait avec eau distillée.
- Agiter doucement, conserver à 4°C.

CONTRÔLE: Solution jaune pâle.

Solution Na₂CO₃ 7,5%

- Peser 3,75 g de Na₂CO₃ sur balance analytique.
- Dissoudre dans 40 ml d'eau distillée chaude (50-60°C).
- Transvaser dans fiole jaugée 50 ml.
- Compléter au trait avec eau distillée.
- Laisser refroidir à température ambiante.

Contrôle: Solution limpide, pas de précipité.

Solution DPPH 0.1 mmol.l⁻¹

- Peser EXACTEMENT 1,97 mg de DPPH sur balance analytique.
- Dissoudre dans 50 ml de méthanol dans fiole jaugée.
- Agiter jusqu'à dissolution complète.
- Conserver dans flacon ambré à 4°C.

Contrôle: Solution violet intense (A₅₁₇ \approx 0.85-0.90).

1.2. Courbes étalons

Courbe acide gallique (0-500 µg/ml)

- Solution mère : 50 mg acide gallique dans 50 ml éthanol 70%
- Préparer les dilutions suivantes :

Concentration (µg/ml)	Volume solution mère (ml)	Volume éthanol (ml)
0	0	10
100	2	8
200	4	6
300	6	4
400	8	2
500	10	0

- Étiqueter soigneusement chaque tube
- Conserver à 4°C pendant le TP.

ÉTAPE 2 : EXTRACTION

2.1. Préparation des échantillons

Pour chaque plante (thym et romarin):

1. Broyage:

- Prendre 2-3 branches séchées de plante.
- Broyer finement au mortier et pilon.
- Homogénéiser la poudre obtenue.

2. Pesée précise :

- Tarer un bécher de pesée sur balance.
- Peser exactement 0,5 g de poudre.
- Noter la masse exacte.

3. Contrôles:

- Vérifier l'homogénéité de la poudre.
- S'assurer de l'absence d'humidité.

2.2. Extraction hydro-alcoolique

Pour chaque échantillon:

1. Transfert:

- Verser la poudre pesée dans un erlenmeyer 100 ml.
- Ajouter 25 ml d'éthanol 70% avec pipette graduée.

2. Extraction:

- Boucher l'erlenmeyer.
- Agiter vigoureusement 2 minutes.
- Laisser macérer 15 minutes à température ambiante.
- Agiter occasionnellement (toutes les 5 minutes).

3. Filtration:

- Placer un entonnoir sur un tube à essai propre.
- Garnir de papier filtre (pré-humidifié avec éthanol).
- Verser le mélange et laisser filtrer par gravité.
- Recueillir environ 10-15 ml de filtrat.

4. Dilution:

- Prélever 2 ml de filtrat avec pipette automatique.
- Ajouter 8 ml d'éthanol 70% dans tube à essai.
- Agiter pour homogénéiser (dilution 1:5).
- Étiqueter clairement : "Extrait dilué [Nom plante]".

ÉTAPE 3: DOSAGES SPECTROPHOTOMÉTRIQUES

3.1. Dosage des polyphénols totaux

Protocole pour chaque échantillon:

- 1. Préparation des tubes :
 - Tube essai propre et étiqueté.
 - Ajouter 0,5 ml d'extrait dilué avec pipette automatique.
 - PRÉCISION: Utiliser pipette 100-1000 μl réglée à 500 μl.

2. Réaction Folin:

- Ajouter 2,5 ml de Folin dilué 1:10.
- Agiter immédiatement au vortex 5 secondes.
- Laisser reposer exactement 5 minutes à température ambiante.
- MINUTERIE : Démarrer minuteur.

3. Développement couleur :

- Ajouter 2 ml de Na₂CO₃ 7,5%.
- Agiter au vortex 10 secondes.
- Placer au bain-marie 40°C pendant 30 minutes.

CONTRÔLE: Respecter temps d'incubation.

4. Mesure spectrophotométrique :

- Préparer blanc : 0,5 ml éthanol 70% au lieu d'extrait.
- Régler spectrophotomètre à 765 nm.
- Faire le blanc avec la cuvette de blanc.
- Mesurer A₇₆₅ de chaque échantillon.

3.2. Test activité antioxydante DPPH

Protocole pour chaque échantillon:

- 1. Préparation mélange réactionnel :
 - Tube essai propre et étiqueté.
 - Ajouter 1 ml d'extrait dilué avec pipette automatique.
 - Ajouter 1 ml de solution DPPH 0,1 mmol.1⁻¹.
 - Agiter immédiatement au vortex 10 secondes.

2. Incubation:

- Couvrir les tubes avec papier aluminium (obscurité).
- Incuber 20 minutes à température ambiante.
- INUTERIE : Démarrer minuteur.

3. Mesure spectrophotométrique :

Méthodes de Caractérisation des Substances Bioactives d'origine Microbienne Année Universitaire : 2025-2026

- Blanc: 1 ml méthanol + 1 ml DPPH.
- Témoin positif : 1,0 ml acide ascorbique 50 μg/ml + 1,0 ml DPPH.
- Régler spectrophotomètre à 517 nm.
- Faire le blanc avec cuvette de blanc.
- Mesurer A₅₁₇ de chaque échantillon.

ÉTAPE 4 : TESTS QUALITATIFS

4.1. Test FeCl₃

Protocole:

- 1. Prélever 1 ml d'extrait dilué dans tube à essai.
- 2. Ajouter 2 gouttes de FeCl₃ 1% ($\approx 100 \mu l$).
- 3. Agiter doucement et observer immédiatement.
- 4. Noter intensité sur échelle 0-3+.

Echelle couleur:

- 0 : Jaune (négatif).
- 1+ : Vert très pâle (faible).
- 2+ : Vert moyen (présence modérée).
- 3+ : Vert foncé/bleu (forte présence).

COMPTE-RENDU

- 1. Expliquez le principe de la réaction Folin-Ciocalteu. Pourquoi utilise-t-on l'acide gallique comme étalon ?
- 2. Pourquoi utilise-t-on l'éthanol 70% comme solvant d'extraction plutôt que l'thanol pur ou l'eau pure ?
- 3. Présentez sous forme de tableau synthétique l'ensemble de vos résultats (absorbances, concentrations, pourcentages d'inhibition).
- 4. Quelle plante présente la plus forte teneur en polyphénols totaux ? Calculez le rendement d'extraction.
- 5. Comparez l'activité antioxydante des deux plantes. Observez-vous une corrélation avec leur teneur en polyphénols ?
- 6. Les tests qualitatifs (FeCl₃) confirment-ils vos résultats quantitatifs? Justifiez votre réponse.
- 7. Quelles sont les limites de la méthode Folin-Ciocalteu pour le dosage des polyphénols totaux?
- 8. Discutez des sources d'erreur potentielles dans ce protocole et proposez des améliorations.
- 9. Le test DPPH mesure-t-il toute l'activité antioxydante des extraits? Quelles autres méthodes pourriez-vous utiliser pour compléter cette évaluation?

Méthodes de Caractérisation des Substances Bioactives d'origine Microbienne Année Universitaire : 2025-2026

- 10. Proposez un protocole pour étudier l'influence du solvant d'extraction sur la teneur en polyphénols.
- 11. Quels tests complémentaires pourriez-vous réaliser pour caractériser plus finement les composés bioactifs de ces plantes ?