Institute of sciences and technology

First year Ing/ST.

academic year 2025/2026

module: Structure of matter

Series Nº 03

Exercise 1:

Complete the following reactions, giving the type of reaction in each case.

1)
$$^{131}_{53}I \longrightarrow ^{131}_{52}Te + \dots$$

2)
$$^{124}_{53}I \longrightarrow \dots + \beta^-$$

3)
$${}_{1}^{3}H + {}_{1}^{2}H \longrightarrow {}_{0}^{1}n + \dots$$

4)
$${}^{14}_{7}N + {}^{4}_{2}He \longrightarrow {}^{16}_{8}O + \dots$$

5)
$$^{215}_{84}Po \longrightarrow ^{211}_{82}Pb + \dots$$

6)
$${}_{0}^{1}n + {}_{92}^{235}U \longrightarrow \dots + {}_{53}^{139}I + 3 {}_{0}^{1}n$$

7)
$${}_{4}^{9}Be(\beta^{+},\alpha)$$

Exercise 2:

Consider the following nuclear reaction:

$$2 {}_{1}^{1}H + 2 {}_{0}^{1}n \longrightarrow {}_{2}^{4}He$$

- 1) Calculate the loss of mass Δm .
- 2) Calculate the energy of cohesion of the nucleons in MeV.
- 3) Calculate the cohesion energy of one nucleon in joules and eV.
- 4) Calculate the cohesion energy of one mole of nucleons in joules and Kcal.

Given
$${}^{4}_{2}$$
He = 4.0026 uma, ${}^{1}_{1}$ H = 1.0073 uma, ${}^{1}_{0}$ n = 1.00866 uma

Exercise 3:

We have the following reaction:

$$^{14}_{7}N ~+~ ^{4}_{2}He ~\rightarrow ~~ ^{17}_{8}O ~+~ ^{1}_{1}H$$

The reaction absorbs energy equal 0.8Mev.

-Calculate the mass of Helium atom in a.m.u

Given mass in a.m.u: ${}_{14}^{7}N = 14,00754; {}_{1}^{1}H = 1,007883; {}_{8}^{16}O = 17,0045$

Exercise 4:

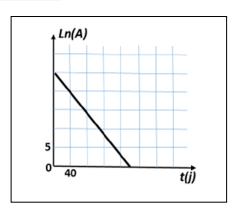
A) Write the following nuclear reactions

$$^{130}_{52} Te(d,2n) \, ^{130}_{53} I \,\, , \,\, ^{40}_{18} Ar(\alpha,P) \, ^{43}_{19} K \,\, , \,\, ^{55}_{25} Mn(n,\gamma) \, ^{56}_{25} Mn \,\, , \,\, ^{15}_{8} O(\beta^{+}) \, ^{15}_{7} N \,\, , \, ^{14}_{6} C(\beta^{-}) \, ^{14}_{7} N \, , \, ^{14}_{7} C(\beta^{-}) \, ^{14}_{7} N \, , \, ^{$$

- B) Detail the nuclear reaction $^{55}_{25}Mn \ (\beta^-)^{56}_{26}Fe$
 - 1) It was found that in 7.5 hours, 1 mole of 56 Mn gives 49 g of 56 Fe.Calculate the period T of manganese
 - 2) Calculate the mass of a sample of manganese. Its activity is 2 x 10⁶ Ci
 - 3) Calculate the energy resulting from disintegration a nucleus of Mn, and then for 1 mole.

Given
56
Mn = 55,93948 a.m.u, 56 Fe =55,93493 a.m.u

Exercise 5:


Thorium $^{232}_{90}Th$ disintegrates into lead nucleus $^{208}_{82}Pb$, after a series of successive reactions, Radioactive particles are released.

-Determine the number and nature of radiation transitions and the resulting miniscule particles in each case.

Exercise 6:

The bismuth nucleus ${}^{210}_{83}Bi$ disintegrates through β - radioactivity.

- 1- Write the nuclear reaction equation that occurs and show how the electron accompanying the radiation is produced.
- 2- A sample of bismuth has a number of nuclei at moment t equal to $N_{(t)}$, Express the number of disintegrated nuclei $N_d(t)$ as a function of time t, the initial number of nuclei N_0 , and the radioactive decay constant λ .
- 3- The curve was plotted where A is the radioactivity of the sample at moment t.
- -Express Ln A in terms of λ and A₀.
- -Deduce the value λ and A_0 from the curve.
- Calculate the number of primary nuclei N₀
- -Calculate the time required to remain $\frac{1}{1000}$ from the number of primary nuclei.

