Ministry of Higher Education and Scientific Research University Center of Mila Institute of Mathematics and Computer Science Department of Computer Science Master 2 I2A – Big Data 2025/2026

Chapter 2 Hadoop Systems

Presented by: Dr. Brahim Benabderrahmane

Table of Contents

Motivation for Hadoop 02 **Hadoop Ecosystem – The Big Picture** 03 **MapReduce Paradigm** 04 **Hadoop Distributed File System (HDFS)** 05 **Hadoop Architecture Evolution** 06 **Hadoop Programming Basics**

Hadoop in Today's Big Data World

01

Motivation for Hadoop

Hadoop and Distributed Big Data Processing

Hadoop is an open-source framework designed for **storing and processing very large** datasets.

It runs on clusters of ordinary (commodity) servers, making it scalable and costeffective.

Hadoop has **two main components**:

- HDFS (Hadoop Distributed File System): stores data by splitting files into blocks and spreading them across many machines.
- MapReduce: processes the data in parallel, close to where it is stored.

This approach allows massive data analysis that would be too slow or expensive on a single powerful server.

Output

Why We Need Hadoop (The Challenge of Big Data)

Explosion of data volumes

- Social media, mobile devices, IoT, online transactions
- From terabytes → petabytes → exabytes

Traditional systems cannot cope

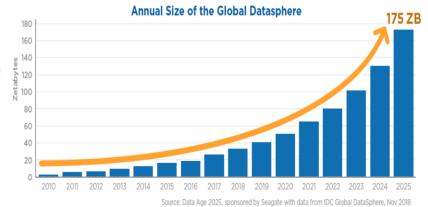
- Limited by single-server storage and CPU power
- Scaling vertically (buying bigger servers) is expensive

Need for distributed solutions

- Store data across many machines
- Process data in parallel for speed and efficiency

Other key requirements

- Fault tolerance: system must survive node failures
- Cost effectiveness: use clusters of commodity hardware



Limitations of Traditional Systems (Single-Machine Bottlenecks)

Storage limitations

- A single machine cannot hold today's massive datasets
- Expanding storage on one server is costly and limited

Processing power limits

- One CPU cannot process petabytes efficiently
- Tasks take hours or days to finish

Scalability problem

• Vertical scaling (buying bigger servers) is expensive and reaches physical limits

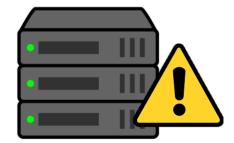
Reliability risk

If the server fails, all data and processing stop

Cost issue

High-end machines and proprietary storage systems are expensive

Storage full

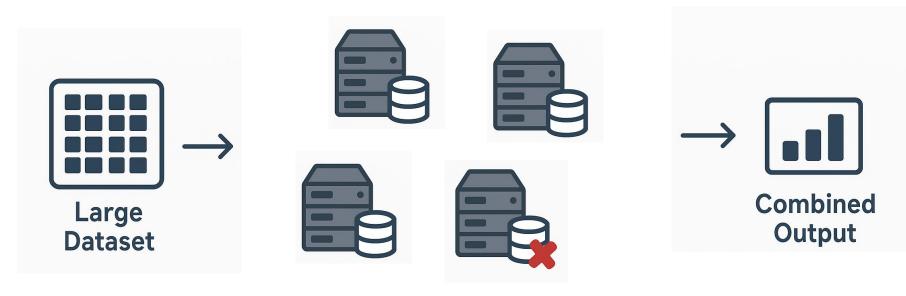


Single point of failure

CPU overloaded

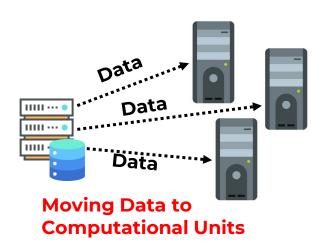
Distributed Systems Approach (Many Machines Working Together)

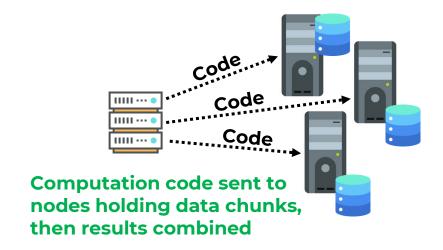
- Divide the problem: Break huge datasets into smaller, manageable chunks
- **Distributed storage:** Keep data pieces on different machines (nodes)
- Parallel processing: Each node processes its own data chunk at the same time
- Horizontal scalability: Add more machines to increase storage and speed
- Fault tolerance: Replicate data so the system continues working if a node fails
- Cost efficiency: Use clusters of inexpensive, commodity hardware



The Locality Principle - Move Computation to Data

- Traditional approach: Move data to the program → requires huge data transfers over the network
- **Problem:** Moving terabytes or petabytes across the network is slow and expensive
- Locality principle: Send the program (code) to the nodes where the data is stored
- **Efficiency**: Each node processes its own local data → far less network traffic
- Result: Faster processing and better scalability for massive datasets





02

Hadoop Ecosystem The Big Picture

Introducing Hadoop – Origins and Evolution

- **Origins:** Created at **Yahoo! in 2006**, inspired by Google's GFS (2003) and MapReduce (2004)
- Purpose: Handle web-scale data (storing & processing billions of web pages)
- Open source: Became an Apache project in 2008 → widely adopted by industry
- Core idea: Use clusters of commodity servers to manage massive data
- **Evolution:** From a simple MapReduce engine → full **big-data ecosystem** with many tools (Hive, Pig, HBase, Spark...)

Hadoop Ecosystem – Core & Supporting Components

Core components:

- HDFS: Distributed storage for huge datasets
- YARN / MapReduce: Resource management and parallel processing

Data access & processing tools:

- Hive: SQL-like interface for querying data in HDFS
- Pig: High-level scripting for data transformations

NoSQL storage:

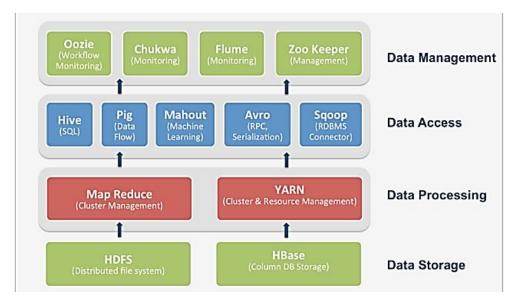
HBase: Column-oriented distributed database

Coordination & scheduling:

- Zookeeper: Synchronization and cluster coordination
- Oozie: Workflow scheduling for jobs

Data ingestion:

- **Sqoop:** Transfers data between Hadoop and RDBMS
- Flume: Collects and streams log or event data



03 MapReduce Paradigm

MapReduce – Core Processing Paradigm

Key idea: Split large data processing into **Map** and **Reduce** phases

Map phase: Each node processes its local data and emits (key, value) pairs Shuffle & sort: Intermediate results are grouped by key across the cluster

Reduce phase: Each reducer aggregates values for its assigned key and produces final

results

Designed for: Large-scale **batch processing**, parallel, and fault-tolerant

Hadoop Map - Reduce flow

MapReduce Workflow – From Input to Output

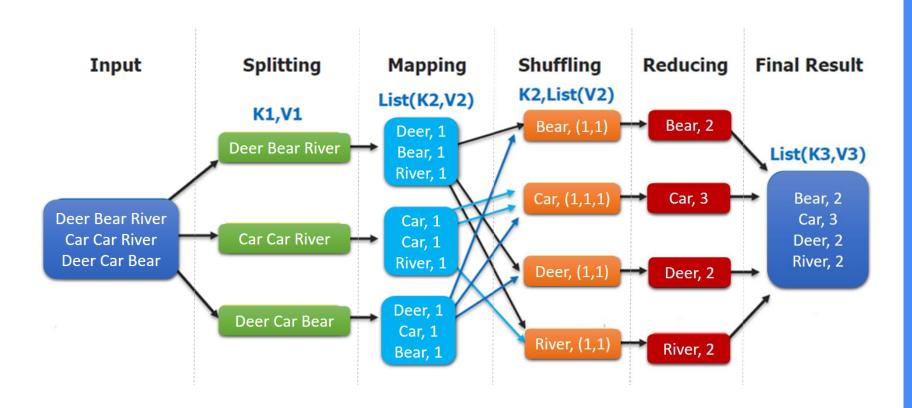
Map Phase Shuffle & Sort

Reduce Phase

Output

- Hadoop splits the input file into blocks stored on different data nodes.
- Each node applies the mapper function to its local split and emits (key, value) pairs.
- Intermediate pairs are grouped by key and sent to the correct reducer.
- Reducers process each key's list of values to produce final aggregated results.
- Final data is written back into HDFS.

Conceptual Example - Word Count



Strengths of MapReduce

Scalability:	Handles petabytes of data across thousands of commodity machines	
Fault Tolerance:	If a node fails, tasks are re-run on another node automatically.	
Data Locality:	Processing happens where the data is stored, reducing network bottlenecks.	
Simplified Programming:	Developers only write Map and Reduce functions; Hadoop handles distribution.	
Cost-Effective:	Runs on commodity hardware instead of expensive high-end servers.	
Proven for Batch Processing:	Ideal for large-scale, offline analytics (e.g., log analysis, web indexing).	

Limitations of MapReduce

High Latency	Each job reads from disk, processes, and writes back → slow for iterative or interactive tasks.	
Batch-Only Model	Designed for offline, one-pass batch processing , not for real- time or streaming analytics.	
Complex Programming	Requires low-level Java code; even simple jobs can be verbose and hard to maintain.	
Inefficient for Small		
Jobs	Startup overhead makes it poor for short, frequent tasks.	
Jobs Not Memory- Efficient:	Startup overhead makes it poor for short, frequent tasks . Intermediate data is persisted to disk between stages, wasting time and I/O.	

Table of Contents

OI	Motivation for Hadoop
02	Hadoop Ecosystem – The Big Picture
03	MapReduce Paradigm
04	Hadoop Distributed File System (HDFS)
05	Hadoop Architecture Evolution
06	Hadoop Programming Basics

Hadoop in Today's Big Data World

04

Hadoop Distributed File System (HDFS)

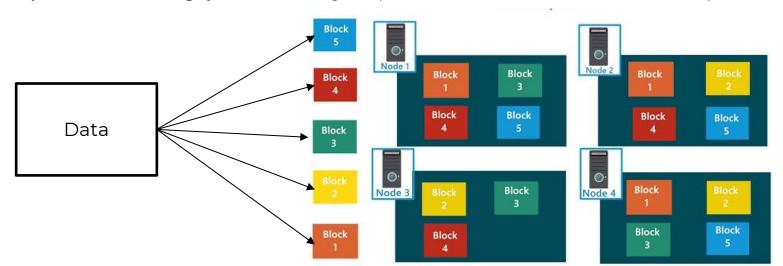
HDFS – Distributed Storage for Big Data

Challenges of Big Data

- **Huge files:** Cannot fit on one machine's disk
- **Need for reliability:** Single machine failure can lose data
- Scalability issue: Hard to expand storage on a single server

HDFS Solution

- **Distributed storage:** Store data across many machines in a cluster
- **Blocks:** Split files into fixed-size blocks (e.g., 128 MB)
- **Replication:** Keep multiple copies (default = 3) for fault-tolerance
- Optimized for throughput: Best for large sequential reads/writes, not small random updates



HDFS Architecture – NameNode & DataNodes

NameNode (Master)

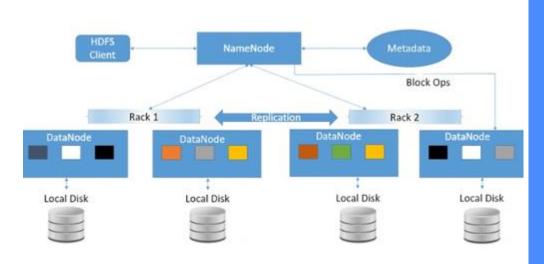
- Central metadata manager
- Stores file system namespace (file names, directories)
- Tracks which DataNodes hold which blocks
- Directs clients to the appropriate DataNodes for read/write

DataNodes (Workers)

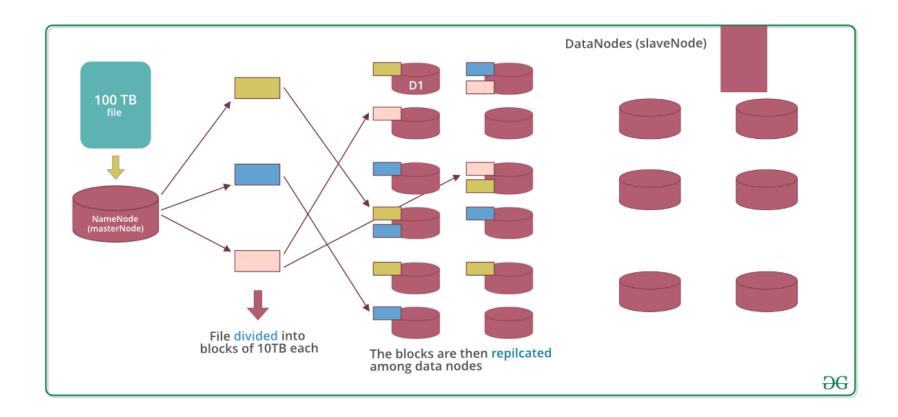
- Store the actual data blocks
- Perform read/write operations on instruction from NameNode
- Periodically send heartbeat & block reports to NameNode

Replication

- Each block is stored on multiple DataNodes (default: 3 copies)
- Provides fault tolerance if one node fails, data is still available



HDFS Architecture – Data storage



05

Hadoop Architecture Evolution

Hadoop Cluster Architecture – Nodes and Roles

Cluster Basics

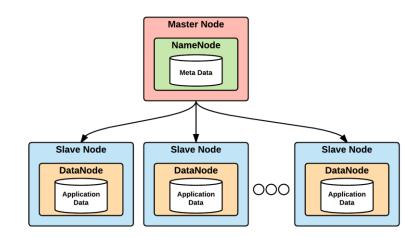
- A cluster = many machines working as one system
- Designed for horizontal scalability → add more nodes to increase capacity

Master Nodes:

- NameNode → manages HDFS metadata (file names, block locations)
- ResourceManager / JobTracker → manages computation and resource allocation

Worker Nodes:

- DataNode → stores actual data blocks
- TaskTracker / NodeManager → executes tasks (MapReduce or Spark jobs)



Hadoop v1 – MapReduce-Centric Architecture

Core Components

JobTracker (Master)

- Schedules and monitors all MapReduce jobs
- Assigns tasks to workers and tracks their progress

TaskTrackers (Workers)

- Run map and reduce tasks on each node
- Report status and progress back to JobTracker

Limitations of Hadoop v1

- Single JobTracker → bottleneck & single point of failure
- **Tightly coupled with MapReduce** → cannot easily run other processing frameworks
- Limited scalability for very large clusters (typically a few thousand nodes)

Hadoop v2 – YARN (Yet Another Resource Negotiator)

Key Idea

- Separates resource management from computation
- Allows many processing frameworks to share the cluster

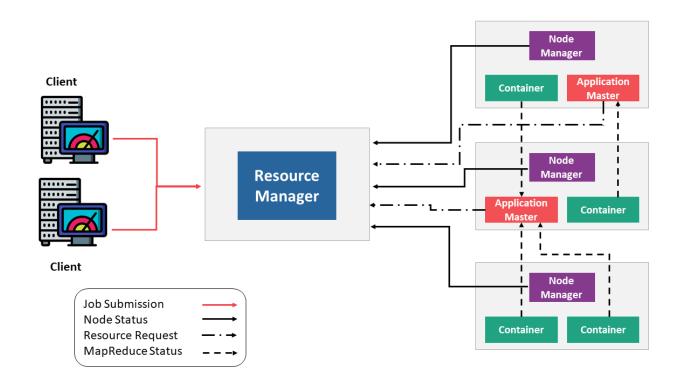
Components:

- 1. ResourceManager (Master)
- Allocates cluster resources to applications
- 2. NodeManagers (Workers)
- Manage resources on each node
- Launch containers to run tasks.
- 3. ApplicationMaster (per job)
- Manages the execution of its own application
- Requests resources from the ResourceManager

Benefits

- Runs **multiple frameworks** (MapReduce, Spark, Tez, etc.) on the same cluster
- Provides better scalability and higher cluster utilization
- Offers improved fault tolerance by avoiding a single JobTracker bottleneck

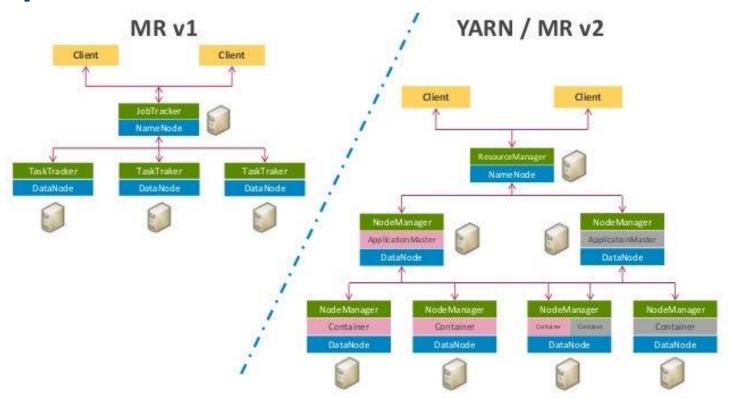
Hadoop - YARN



Hadoop MRv1 vs. YARN - Key Differences

Feature	Hadoop MRv1	Hadoop v2 – YARN
Resource Manager	JobTracker manages both resource allocation and job scheduling	ResourceManager handles resources; ApplicationMaster manages each job
Application Support	Supports only MapReduce	Supports multiple frameworks (MapReduce, Spark, Tez, etc.)
Scalability	Limited due to single JobTracker bottleneck	Scales to much larger clusters (10,000+ nodes)
Fault Tolerance	Single point of failure (JobTracker)	More resilient: if an ApplicationMaster fails, others continue
Flexibility	Tightly coupled with MapReduce	Flexible: can run batch, interactive, streaming workloads

MapReduce 1 vs YARN



YARN: Yet Another Resource Negotiator

MR: MapReduce

06

Hadoop Programming Basics

Anatomy of a Hadoop Job – Driver, Mapper, Reducer

Driver Program

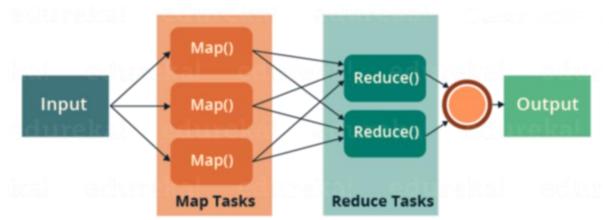
- Configures the **job** (input/output paths, mapper/reducer classes, settings)
- Submits the job to the cluster via YARN
- Monitors progress until completion

Mapper

- Processes input data record by record
- Transforms data and emits intermediate (key, value) pairs
- Example: (word → 1) in a word count job

Reducer

- Receives all intermediate values grouped by key
- Aggregates or combines results
- Produces final output (e.g., total count per word)



Hadoop Job Execution Overview

1. Job Submission

- •User runs a program (Driver) that defines **Mapper**, **Reducer**, input/output paths
- •The **Driver** submits the job to the **YARN ResourceManager**

2. Job Initialization

- •ResourceManager creates an ApplicationMaster for the job
- The ApplicationMaster requests containers on NodeManagers

3. Task Execution

- Containers launch Map tasks and Reduce tasks on cluster nodes
- Map outputs are shuffled and sorted, then sent to reducers

4. Job Completion

- •Reducers produce the **final output** written back to **HDFS**
- •The **Driver** receives job completion status and logs results

Map Function Logic

Mapper processes each line independently.

```
import sys

for line in sys.stdin:
   for word in line.strip().split():
      print(f"{word}\t1")
```

Reduce Function Logic

```
import sys
current word = None
current_count = 0
for line in sys.stdin:
  word, count = line.strip().split("\t")
  count = int(count)
  if current word == word:
    current count += count
  else:
    if current word:
       print(f"{current_word}\t{current_count}")
    current word = word
    current_count = count
if current_word:
  print(f"{current_word}\t{current_count}")
```

The Driver Class

Driver configures job → submits to YARN → monitors progress.

```
hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \
-input /data/input \
-output /data/output \
-mapper mapper.py \
-reducer reducer.py \
-file mapper.py \
-file reducer.py
```

Hadoop Job Execution in the Cluster

What Happens When You Run a Job

- 1. Driver submits the job to the YARN ResourceManager
- 2. ApplicationMaster starts and requests resources from the cluster
- **3. Map tasks** are launched on **DataNodes** holding the input blocks (data locality)
- 4. Shuffle & Sort phase moves intermediate data to reducers
- 5. Reduce tasks run, results written to HDFS output directory
- 6. ApplicationMaster reports job completion to the Driver

07

Hadoop in Today's Big Data World

Hadoop's Legacy and Current Role

- Hadoop revolutionized big data storage and processing in the 2010s.
- Today, **HDFS** is still used for large-scale, distributed storage.
- YARN continues to manage resources in many enterprise clusters.
- MapReduce has declined, replaced by Apache Spark, Flink, and Presto.
- Hadoop now serves as a **data lake foundation**, as many systems still rely on it underneath.

Hadoop (2005)

Ecosystem Expansion (2010)

Spark & Streaming (2015)

Cloud & Hybrid Data Lakes (Now)

Hadoop vs. Modern Data Architectures

Feature	Traditional Hadoop Cluster	Modern Cloud/Hybrid Systems
Deployment	On-premise servers	Cloud-based (AWS EMR, Dataproc, HDInsight)
Storage	HDFS	Cloud storage (S3, GCS, ADLS)
Compute Engine	MapReduce, Spark-on-YARN	Serverless Spark, Flink, Beam
Scalability	Hardware scaling	Elastic scaling
Maintenance	Manual cluster management	Managed services

Hadoop in Real-World Use Today

Still used by:

- Enterprises managing petabytes of data on-premise (banks, telecom, government).
- Cloud-managed Hadoop clusters (AWS EMR, Azure HDInsight, Google Dataproc).
- Hybrid architectures mixing HDFS + cloud object storage.

Acts as backend storage for:

Spark, Hive, Presto, Impala, Kafka pipelines.

Hadoop remains strong where data locality and cost control matter

The Future of Hadoop

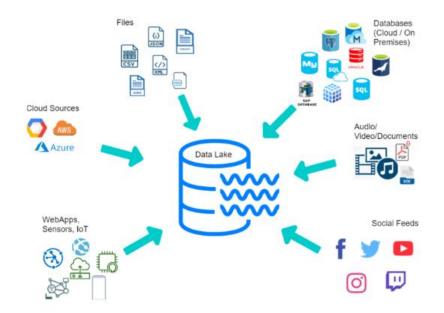
Shift from batch → real-time analytics.

Hadoop evolving toward:

- Integration with cloud-native tools (Kubernetes, object storage).
- Use as part of data lakehouse architectures (HDFS + Delta Lake / Iceberg).

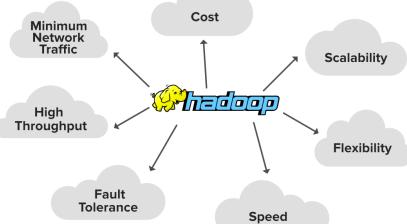
Open-source community still active (Apache Hadoop 3.x+).

Future: Hadoop as a **stable storage + resource layer**, not the "whole stack."



Key Takeaways

- Hadoop laid the foundation for distributed data processing.
- HDFS and YARN remain critical in many infrastructures.
- The ecosystem evolved: Spark, Flink, and cloud platforms now lead in compute.
- Hadoop's principles (scalability, fault tolerance, data locality) live on in all modern systems.
- The future is hybrid and cloud-integrated. but Hadoop's DNA remains everywhere.



End of Chapter 2