
1

Chapter 2
Hadoop Systems

Ministry of Higher Education and Scientific Research
University Center of Mila
Institute of Mathematics and Computer Science
Department of Computer Science
Master 2 I2A – Big Data
2025/2026

Presented by: Dr. Brahim Benabderrahmane

Table of Contents

Motivation for Hadoop01
Hadoop Ecosystem – The Big Picture02
MapReduce Paradigm03
Hadoop Distributed File System (HDFS)04
Hadoop Architecture Evolution05
Hadoop Programming Basics06
Hadoop in Today’s Big Data World07

Motivation for Hadoop

01

Hadoop and Distributed Big Data Processing

Hadoop is an open-source framework designed for storing and processing very large
datasets.
It runs on clusters of ordinary (commodity) servers, making it scalable and cost-
effective.
Hadoop has two main components:
• HDFS (Hadoop Distributed File System): stores data by splitting files into blocks and

spreading them across many machines.
• MapReduce: processes the data in parallel, close to where it is stored.
This approach allows massive data analysis that would be too slow or expensive on a
single powerful server.

Output

Why We Need Hadoop (The Challenge of Big Data)

Explosion of data volumes

• Social media, mobile devices, IoT, online transactions

• From terabytes → petabytes → exabytes

Traditional systems cannot cope

• Limited by single-server storage and CPU power

• Scaling vertically (buying bigger servers) is expensive

Need for distributed solutions

• Store data across many machines

• Process data in parallel for speed and efficiency

Other key requirements

• Fault tolerance: system must survive node failures

• Cost effectiveness: use clusters of commodity hardware

Limitations of Traditional Systems (Single-Machine Bottlenecks)

Storage limitations
• A single machine cannot hold today’s massive datasets
• Expanding storage on one server is costly and limited
Processing power limits
• One CPU cannot process petabytes efficiently
• Tasks take hours or days to finish
Scalability problem
• Vertical scaling (buying bigger servers) is expensive and reaches physical limits
Reliability risk
• If the server fails, all data and processing stop
Cost issue
• High-end machines and proprietary storage systems are expensive

Storage full

Single point of failure

CPU overloaded

Distributed Systems Approach (Many Machines Working Together)

• Divide the problem: Break huge datasets into smaller, manageable chunks
• Distributed storage: Keep data pieces on different machines (nodes)
• Parallel processing: Each node processes its own data chunk at the same time
• Horizontal scalability: Add more machines to increase storage and speed
• Fault tolerance: Replicate data so the system continues working if a node fails
• Cost efficiency: Use clusters of inexpensive, commodity hardware

The Locality Principle - Move Computation to Data

• Traditional approach: Move data to the program → requires huge data transfers over
the network

• Problem: Moving terabytes or petabytes across the network is slow and expensive
• Locality principle: Send the program (code) to the nodes where the data is stored
• Efficiency: Each node processes its own local data → far less network traffic
• Result: Faster processing and better scalability for massive datasets

Moving Data to
Computational Units

Computation code sent to
nodes holding data chunks,
then results combined

Hadoop Ecosystem
The Big Picture

02

2003

(GFS)

2004
(MapReduce)

2006

(Yahoo!
Hadoop)

2008

(Apache
Hadoop)

2012+

(YARN &
Spark)

Introducing Hadoop – Origins and Evolution

● Origins: Created at Yahoo! in 2006, inspired by Google’s GFS (2003) and MapReduce
(2004)

● Purpose: Handle web-scale data (storing & processing billions of web pages)
● Open source: Became an Apache project in 2008 → widely adopted by industry
● Core idea: Use clusters of commodity servers to manage massive data
● Evolution: From a simple MapReduce engine → full big-data ecosystem with many

tools (Hive, Pig, HBase, Spark…)

Hadoop Ecosystem – Core & Supporting Components
Core components:

● HDFS: Distributed storage for huge datasets

● YARN / MapReduce: Resource management and parallel

processing

Data access & processing tools:

● Hive: SQL-like interface for querying data in HDFS

● Pig: High-level scripting for data transformations

NoSQL storage:

● HBase: Column-oriented distributed database

Coordination & scheduling:

● Zookeeper: Synchronization and cluster coordination

● Oozie: Workflow scheduling for jobs

Data ingestion:

● Sqoop: Transfers data between Hadoop and RDBMS

● Flume: Collects and streams log or event data

MapReduce Paradigm
03

MapReduce – Core Processing Paradigm

Key idea: Split large data processing into Map and Reduce phases
Map phase: Each node processes its local data and emits (key, value) pairs
Shuffle & sort: Intermediate results are grouped by key across the cluster
Reduce phase: Each reducer aggregates values for its assigned key and produces final
results
Designed for: Large-scale batch processing, parallel, and fault-tolerant

MapReduce Workflow – From Input to Output

Input
Splits

• Hadoop splits
the input file
into blocks
stored on
different data
nodes.

Map
Phase

• Each node
applies the
mapper
function to its
local split and
emits (key,
value) pairs.

Shuffle
& Sort

• Intermediate
pairs are
grouped by key
and sent to the
correct reducer.

Reduce
Phase

• Reducers
process each
key’s list of
values to
produce final
aggregated
results.

Output

• Final data is
written back
into HDFS.

Conceptual Example – Word Count

Strengths of MapReduce

Handles petabytes of data across thousands of commodity
machines

Scalability:

If a node fails, tasks are re-run on another node automatically.
Fault Tolerance:

Processing happens where the data is stored, reducing
network bottlenecks.

Data Locality:

Developers only write Map and Reduce functions; Hadoop
handles distribution.

Simplified
Programming:

Runs on commodity hardware instead of expensive high-end
servers.

Cost-Effective:

Ideal for large-scale, offline analytics (e.g., log analysis, web
indexing).

Proven for Batch
Processing:

Limitations of MapReduce

Each job reads from disk, processes, and writes back → slow for
iterative or interactive tasks.

High Latency

Designed for offline, one-pass batch processing, not for real-
time or streaming analytics.

Batch-Only Model

Requires low-level Java code; even simple jobs can be verbose
and hard to maintain.

Complex
Programming

Startup overhead makes it poor for short, frequent tasks.

Inefficient for Small
Jobs

Intermediate data is persisted to disk between stages, wasting
time and I/O.

Not Memory-
Efficient:

Chaining multiple MapReduce jobs leads to complex
workflows and performance bottlenecks.

Hard to Optimize
Pipelines

Table of Contents

Motivation for Hadoop01
Hadoop Ecosystem – The Big Picture02
MapReduce Paradigm03
Hadoop Distributed File System (HDFS)04
Hadoop Architecture Evolution05
Hadoop Programming Basics06
Hadoop in Today’s Big Data World07

Hadoop Distributed File
System (HDFS)

04

HDFS – Distributed Storage for Big Data
Challenges of Big Data
• Huge files: Cannot fit on one machine’s disk
• Need for reliability: Single machine failure can lose data
• Scalability issue: Hard to expand storage on a single server

HDFS Solution
• Distributed storage: Store data across many machines in a cluster
• Blocks: Split files into fixed-size blocks (e.g., 128 MB)
• Replication: Keep multiple copies (default = 3) for fault-tolerance
• Optimized for throughput: Best for large sequential reads/writes, not small random updates

Data

HDFS Architecture – NameNode & DataNodes

NameNode (Master)
• Central metadata manager
• Stores file system namespace (file names,

directories)
• Tracks which DataNodes hold which

blocks
• Directs clients to the appropriate

DataNodes for read/write

DataNodes (Workers)
• Store the actual data blocks
• Perform read/write operations on

instruction from NameNode
• Periodically send heartbeat & block

reports to NameNode

Replication
• Each block is stored on multiple

DataNodes (default: 3 copies)
• Provides fault tolerance — if one node fails,

data is still available

HDFS Architecture – Data storage

Hadoop Architecture Evolution

05

Hadoop Cluster Architecture – Nodes and Roles

Cluster Basics
• A cluster = many machines working as one system
• Designed for horizontal scalability → add more nodes

to increase capacity

Master Nodes:
• NameNode → manages HDFS metadata (file names,

block locations)
• ResourceManager / JobTracker → manages

computation and resource allocation

Worker Nodes:
• DataNode → stores actual data blocks
• TaskTracker / NodeManager → executes tasks

(MapReduce or Spark jobs)

Hadoop v1 – MapReduce-Centric Architecture

Core Components

JobTracker (Master)
• Schedules and monitors all MapReduce

jobs
• Assigns tasks to workers and tracks their

progress

TaskTrackers (Workers)
• Run map and reduce tasks on each node
• Report status and progress back to

JobTracker

Limitations of Hadoop v1
• Single JobTracker → bottleneck & single point of failure
• Tightly coupled with MapReduce → cannot easily run other processing frameworks
• Limited scalability for very large clusters (typically a few thousand nodes)

Hadoop v2 – YARN (Yet Another Resource Negotiator)

Key Idea
• Separates resource management from computation
• Allows many processing frameworks to share the cluster

Components:
1. ResourceManager (Master)
• Allocates cluster resources to applications
2. NodeManagers (Workers)
• Manage resources on each node
• Launch containers to run tasks
3. ApplicationMaster (per job)
• Manages the execution of its own application
• Requests resources from the ResourceManager

Benefits
• Runs multiple frameworks (MapReduce, Spark, Tez, etc.) on the same cluster
• Provides better scalability and higher cluster utilization
• Offers improved fault tolerance by avoiding a single JobTracker bottleneck

Hadoop - YARN

Hadoop MRv1 vs. YARN – Key Differences

Feature Hadoop MRv1 Hadoop v2 – YARN

Resource Manager JobTracker manages both resource
allocation and job scheduling

ResourceManager handles resources;
ApplicationMaster manages each job

Application Support Supports only MapReduce Supports multiple frameworks
(MapReduce, Spark, Tez, etc.)

Scalability Limited due to single JobTracker
bottleneck

Scales to much larger clusters
(10,000+ nodes)

Fault Tolerance Single point of failure (JobTracker) More resilient: if an ApplicationMaster
fails, others continue

Flexibility Tightly coupled with MapReduce Flexible: can run batch, interactive,
streaming workloads

MapReduce 1 vs YARN

Hadoop Programming
Basics

06

Anatomy of a Hadoop Job – Driver, Mapper, Reducer

Driver Program
• Configures the job (input/output paths, mapper/reducer classes, settings)
• Submits the job to the cluster via YARN
• Monitors progress until completion
Mapper
• Processes input data record by record
• Transforms data and emits intermediate (key, value) pairs
• Example: (word → 1) in a word count job
Reducer
• Receives all intermediate values grouped by key
• Aggregates or combines results
• Produces final output (e.g., total count per word)

Hadoop Job Execution Overview

1. Job
Submission

•User runs a program (Driver) that defines Mapper, Reducer,
input/output paths

•The Driver submits the job to the YARN ResourceManager

2. Job
Initialization

•ResourceManager creates an ApplicationMaster for the job

•The ApplicationMaster requests containers on NodeManagers

3. Task
Execution

•Containers launch Map tasks and Reduce tasks on cluster
nodes

•Map outputs are shuffled and sorted, then sent to reducers

4. Job
Completion

•Reducers produce the final output written back to HDFS

•The Driver receives job completion status and logs results

Map Function Logic

import sys

for line in sys.stdin:

for word in line.strip().split():

print(f"{word}\t1")

Mapper processes each line independently.

Reduce Function Logic
import sys

current_word = None

current_count = 0

for line in sys.stdin:

word, count = line.strip().split("\t")

count = int(count)

if current_word == word:

current_count += count

else:

if current_word:

print(f"{current_word}\t{current_count}")

current_word = word

current_count = count

if current_word:

print(f"{current_word}\t{current_count}")

The Driver Class

hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \

-input /data/input \

-output /data/output \

-mapper mapper.py \

-reducer reducer.py \

-file mapper.py \

-file reducer.py

Driver configures job → submits to YARN → monitors progress.

Hadoop Job Execution in the Cluster

What Happens When You Run a Job
1. Driver submits the job to the YARN ResourceManager
2. ApplicationMaster starts and requests resources from the cluster
3. Map tasks are launched on DataNodes holding the input blocks (data

locality)
4. Shuffle & Sort phase moves intermediate data to reducers
5. Reduce tasks run, results written to HDFS output directory
6. ApplicationMaster reports job completion to the Driver

Hadoop in Today’s
Big Data World

07

Hadoop’s Legacy and Current Role

• Hadoop revolutionized big data storage and processing in the 2010s.
• Today, HDFS is still used for large-scale, distributed storage.
• YARN continues to manage resources in many enterprise clusters.
• MapReduce has declined, replaced by Apache Spark, Flink, and Presto.
• Hadoop now serves as a data lake foundation, as many systems still rely on it

underneath.

Hadoop (2005)
Ecosystem
Expansion

(2010)

Spark &
Streaming

(2015)

Cloud & Hybrid
Data Lakes

(Now)

Hadoop vs. Modern Data Architectures

Feature Traditional Hadoop Cluster Modern Cloud/Hybrid Systems

Deployment On-premise servers Cloud-based
(AWS EMR, Dataproc, HDInsight)

Storage HDFS Cloud storage (S3, GCS, ADLS)

Compute Engine MapReduce, Spark-on-YARN Serverless Spark, Flink, Beam

Scalability Hardware scaling Elastic scaling

Maintenance Manual cluster management Managed services

Hadoop in Real-World Use Today
Still used by:
• Enterprises managing petabytes of data on-premise (banks, telecom,

government).
• Cloud-managed Hadoop clusters (AWS EMR, Azure HDInsight, Google

Dataproc).
• Hybrid architectures mixing HDFS + cloud object storage.

Acts as backend storage for:
• Spark, Hive, Presto, Impala, Kafka pipelines.

Hadoop remains strong where data locality and cost control matter

The Future of Hadoop
Shift from batch → real-time analytics.
Hadoop evolving toward:
• Integration with cloud-native tools (Kubernetes, object storage).
• Use as part of data lakehouse architectures (HDFS + Delta Lake / Iceberg).
Open-source community still active (Apache Hadoop 3.x+).
Future: Hadoop as a stable storage + resource layer, not the “whole stack.”

Key Takeaways

• Hadoop laid the foundation for distributed data processing.
• HDFS and YARN remain critical in many infrastructures.
• The ecosystem evolved : Spark, Flink, and cloud platforms now lead in

compute.
• Hadoop’s principles (scalability, fault tolerance, data locality) live on in all

modern systems.
• The future is hybrid and cloud-integrated, but Hadoop’s DNA remains

everywhere.

End of
Chapter 2

	Slide 1: Chapter 2 Hadoop Systems🐘
	Slide 2: Table of Contents
	Slide 3: Motivation for Hadoop
	Slide 4: Hadoop and Distributed Big Data Processing
	Slide 5: Why We Need Hadoop (The Challenge of Big Data)
	Slide 6: Limitations of Traditional Systems (Single-Machine Bottlenecks)
	Slide 7: Distributed Systems Approach (Many Machines Working Together)
	Slide 8: The Locality Principle - Move Computation to Data
	Slide 9: Hadoop Ecosystem The Big Picture
	Slide 10: Introducing Hadoop – Origins and Evolution
	Slide 11: Hadoop Ecosystem – Core & Supporting Components
	Slide 12: MapReduce Paradigm
	Slide 13: MapReduce – Core Processing Paradigm
	Slide 14: MapReduce Workflow – From Input to Output
	Slide 15: Conceptual Example – Word Count
	Slide 16: Strengths of MapReduce
	Slide 17: Limitations of MapReduce
	Slide 18: Table of Contents
	Slide 19: Hadoop Distributed File System (HDFS)
	Slide 20: HDFS – Distributed Storage for Big Data
	Slide 21: HDFS Architecture – NameNode & DataNodes
	Slide 22: HDFS Architecture – Data storage
	Slide 23: Hadoop Architecture Evolution
	Slide 24: Hadoop Cluster Architecture – Nodes and Roles
	Slide 25: Hadoop v1 – MapReduce-Centric Architecture
	Slide 26: Hadoop v2 – YARN (Yet Another Resource Negotiator)
	Slide 27: Hadoop - YARN
	Slide 28: Hadoop MRv1 vs. YARN – Key Differences
	Slide 29: MapReduce 1 vs YARN
	Slide 30: Hadoop Programming Basics
	Slide 31: Anatomy of a Hadoop Job – Driver, Mapper, Reducer
	Slide 32: Hadoop Job Execution Overview
	Slide 33: Map Function Logic
	Slide 34: Reduce Function Logic
	Slide 35: The Driver Class
	Slide 36: Hadoop Job Execution in the Cluster
	Slide 37: Hadoop in Today’s Big Data World
	Slide 38: Hadoop’s Legacy and Current Role
	Slide 39: Hadoop vs. Modern Data Architectures
	Slide 40: Hadoop in Real-World Use Today
	Slide 41: The Future of Hadoop
	Slide 42: Key Takeaways
	Slide 43: End of Chapter 2

