Ministry of Higher Education and Scientific Research
University Center of Mila

Institute of Mathematics and Computer Science
Department of Computer Science

Master 2 12A - Big Data

2025/2026

Chapter 2
Hadoop Systems @)

Presented by: Dr. Brahim Benabderrahmane

Table of Contents

01 Motivation for Hadoop

02 Hadoop Ecosystem - The Big Picture
O3 MapReduce Paradigm
04 Hadoop Distributed File System (HDFS)

05 Hadoop Architecture Evolution

O6 Hadoop Programming Basics
07 Hadoop in Today’s Big Data World

Ol

Motivation for Hadoop

Hadoop and Distributed Big Data Processing

Hadoop is an open-source framework designed for storing and processing very large

datasets.

It runs on clusters of ordinary (commodity) servers, making it scalable and cost-

effective.

Hadoop has two main components:

« HDFS (Hadoop Distributed File System): stores data by splitting files into blocks and
spreading them across many machines.

« MapReduce: processes the data in parallel, close to where it is stored.

Thisapproach allows massive data analysis that would be too slow or expensive on a

single powerful server.

Why We Need Hadoop (The Challenge of Big Data)

Explosion of data volumes
* Social media, mobile devices, loT, online transactions
* From terabytes — petabytes — exabytes

Traditional systems cannot cope
» Limited by single-server storage and CPU power
« Scaling vertically (buying bigger servers) is expensive

Need for distributed solutions
» Store data across many machines
* Process data in parallel for speed and efficiency

Other key requirements
» Fault tolerance: system must survive node failures
» Cost effectiveness: use clusters of commodity hardware

p 140
> 120

Annual Size of the Global Datasphere

175ZB

Limitations of Traditional Systems (Single-Machine Bottlenecks)

Storage limitations

*« Asingle machine cannot hold today's massive datasets

« Expanding storage on one server is costly and limited

Processing power limits

« One CPU cannot process petabytes efficiently

+ Tasks take hours or days to finish

Scalability problem

» Vertical scaling (buying bigger servers) is expensive and reaches physical limits
Reliability risk

« Ifthe server fails, all data and processing stop

Cost issue

 High-end machines and proprietary storage systems are expensive

Storage full

Single point of failure

CPU overloaded

Distributed Systems Approach (Many Machines Working Together)

« Divide the problem: Break huge datasets into smaller, manageable chunks

« Distributed storage: Keep data pieces on different machines (nodes)

« Parallel processing: Each node processes its own data chunk at the same time
« Horizontal scalability: Add more machines to increase storage and speed

* Fault tolerance: Replicate data so the system continues working if a node fails
+ Cost efficiency: Use clusters of inexpensive, coommodity hardware

pr—
1 1]
1 1]|
] 1]
1 11|

-
Large
Dataset

— lll

& Combined

Output

-
=2

The Locality Principle - Move Computation to Data

Traditional approach: Move data to the program » requires huge data transfers over

the network

Problem: Moving terabytes or petabytes across the network is slow and expensive
Locality principle: Send the program (code) to the nodes where the data is stored
Efficiency: Each node processes its own local data - far less network traffic
Result: Faster processing and better scalability for massive datasets

Moving Data to
Computational Units

.
.
.®

e
““
Y

Computation code sent to
nodes holding data chunks,
then results combined

02

Hadoop Ecosystem
The Big Picture

Introducing Hadoop - Origins and Evolution

Origins: Created at Yahoo! in 2006, inspired by Google's GFS (2003) and MapReduce
(2004)

Purpose: Handle web-scale data (storing & processing billions of web pages)

Open source: Became an Apache project in 2008 > widely adopted by industry
Core idea: Use clusters of commodity servers to manage massive data

Evolution: From a simple MapReduce engine » full big-data ecosystem with many
tools (Hive, Pig, HBase, Spark...)

a4 N[N[N[N[)
2003 2004 2006 2008 2012+

MapRed (Yahoo! (Apache (YARN &
(GFS) (MapReduce) Hadoop) Hadoop) Spark)

~— N\ /

Hadoop Ecosystem - Core & Supporting Components

Core components: Coordination & scheduling:
e HDFS: Distributed storage for huge datasets e Zookeeper: Synchronization and cluster coordination
e YARN / MapReduce: Resource management and parallel e Oozie: Workflow scheduling for jobs
processing Data ingestion:
Data access & processing tools: e Sqoop: Transfers data between Hadoop and RDBMS
e Hive: SQL-like interface for querying data in HDFS e Flume: Collects and streams log or event data
e Pig: High-level scripting for data transformations
NoSQL storage:

e HBase: Column-oriented distributed database

Data Management

: Pig Mahout Avro Sqoop
(Data (Machine (RPC, (RDBMS Data Access

Flow) Learning) Serialization) Connector)

1
|
YARN .
(clmgyMgs;ig:Snt) (Cluster & Resource Management) Data Processmg

Data Storage

03

MapReduce Paradigm

MapReduce - Core Processing Paradigm

Key idea: Split large data processing into Map and Reduce phases

Map phase: Each node processes its local data and emits (key, value) pairs

Shuffle & sort: Intermediate results are grouped by key across the cluster

Reduce phase: Each reducer aggregates values for its assigned key and produces final
results

Designed for: Large-scale batch processing, parallel, and fault-tolerant

Hadoop Map - Reduce flow

Input — Map — Shuﬁgng - Reduce —— Output
an

Sorting

MapReduce Workflow - From Input to Output

Input Map Shuffle Reduce
Splits >> Phase >> & Sort Phase Qutput

- Hadoop splits - Each node - Intermediate - Reducers - Final data is
the input file applies the pairs are process each written back
into blocks mapper grouped by key key’s list of into HDFS.
stored on function to its and sent to the values to
different data local split and correct reducer. produce final
nodes. emits (key, aggregated

value) pairs. results.

Conceptual Example - Word Count

Input Splitting Mapping Shuffling §Reducing %Final Result
List(K2,V2) K2,List(V2)

Ki,vV1i
’ Deer, 1 Bear, (1,1) Bear, 2
Deer Bear River : Bear, 1 : | \ List(K3,V3)
\/

River, 1 ‘

Deer Bear River
Car Car River Car Car River
Deer Car Bear

Deer Car Bear

Strengths of MapReduce

Scalability:

Fault Tolerance;

Data Locality:

Simplified
Programming:

Cost-Effective;

Proven for Batch
Processing:

Handles petabytes of data across thousands of commodity
machines

If a node fails, tasks are re-run on another node automatically.

Processing happens where the data is stored, reducing
network bottlenecks.

Developers only write Map and Reduce functions; Hadoop
handles distribution.

Runs on commodity hardware instead of expensive high-end
servers.

|Ideal for large-scale, offline analytics (e.g., log analysis, web
indexing).

Limitations of MapReduce

High Latency

Batch-Only Model

Complex
Programming

Inefficient for Small
Jobs

Not Memory-
Efficient:

Hard to Optimize
Pipelines

Each job reads from disk, processes, and writes back » slow for
iterative or interactive tasks.

Designed for offline, one-pass batch processing, not for real-
time or streaming analytics.

Requires low-level Java code; even simple jobs can be verbose
and hard to maintain.

Startup overhead makes it poor for short, frequent tasks.

Intermediate data is persisted to disk between stages, wasting
time and I/O.

Chaining multiple MapReduce jobs leads to complex
workflows and performance bottlenecks.

Table of Contents

01 Motivation for Hadoop

02 Hadoop Ecosystem - The Big Picture
O3 MapReduce Paradigm
04 Hadoop Distributed File System (HDFS)

05 Hadoop Architecture Evolution

O6 Hadoop Programming Basics
07 Hadoop in Today’s Big Data World

04

Hadoop Distributed File
System (HDFS)

HDFS - Distributed Storage for Big Data

Challenges of Big Data

* Huge files: Cannot fit on one machine’s disk

* Need for reliability: Single machine failure can lose data

« Scalability issue: Hard to expand storage on a single server

HDFS Solution

- Distributed storage: Store data across many machines in a cluster

+ Blocks: Split files into fixed-size blocks (e.g., 128 MB)

¢ Replication: Keep multiple copies (default = 3) for fault-tolerance

+ Optimized for throughput: Best for large sequential reads/writes, not small random updates

Block

1

Block

Data

HDFS Architecture - NameNode & DataNodes

NameNode (Master)

+ Central metadata manager

» Stores file system namespace (file names,
directories)

« Tracks which DataNodes hold which

HDFS
blocks G

* Directsclients to the appropriate

DataNodes for read/write Block Ovs
Rack 1 1 Rack 2
DataNodes (Workers)
- Store the actual data blocks Dm"m N Dm""dc Dmum
+ Perform read/write operations on
instruction from NameNode
o Periodically send heartbeat & block Local Disk Local Disk Local Disk Local Disk
_— - > >
reports to NameNode — ~— = =
~E —— ~ ~——

Replication

« Each block is stored on multiple
DataNodes (default: 3 copies)

e« Provides fault tolerance — if one node fails,
data is still available

HDFS Architecture - Data storage

DataNodes (slaveNode) .

= s B2 B

—iB
- - e

File divided into ‘ .

blocks of 10TB each The blocks are then repilcated
among data nodes

05

Hadoop Architecture Evolution

Hadoop Cluster Architecture - Nodes and Roles

Cluster Basics

* Acluster = many machines working as one system

« Designed for horizontal scalability - add more nodes
to increase capacity

Master Node

NameNode
——

Master Nodes:

« NameNode » manages HDFS metadata (file names,

block locations)
« ResourceManager / JobTracker > manages !

computation and resource allocation Slave Node Slave Node Slave Node

DataNode

Application
Data

DataNode DataNode
——

Application OOO Application
Data Data

Worker Nodes:

« DataNode - stores actual data blocks

« TaskTracker / NodeManager - executes tasks
(MapReduce or Spark jobs)

Hadoop vl - MapReduce-Centric Architecture

Core Components

JobTracker (Master) TaskTrackers (Workers)

* Schedules and monitors all MapReduce +« Run map and reduce tasks on each node
jobs * Report status and progress back to

* Assigns tasks to workers and tracks their JobTracker
progress

Limitations of Hadoop v1

« Single JobTracker - bottleneck & single point of failure

« Tightly coupled with MapReduce - cannot easily run other processing frameworks
« Limited scalability for very large clusters (typically a few thousand nodes)

Hadoop v2 - YARN (Yet Another Resource Negotiator

+ Separates resource management from computation
« Allows many processing frameworks to share the cluster

Components:

1. ResourceManager (Master)

+ Allocates cluster resources to applications

2. NodeManagers (Workers)

+ Manage resources on each node

* Launch containers to run tasks

3. ApplicationMaster (per job)

« Manages the execution of its own application
* Requests resources from the ResourceManager

Benefits

« Runs multiple frameworks (MapReduce, Spark, Tez, etc.) on the same cluster
« Provides better scalability and higher cluster utilization

« Offers improved fault tolerance by avoiding a single JobTracker bottleneck

Hadoop - YARN

Client

Node
Manager
Application
Master

|
----- —-—— =

Resource
e
Manager
Client
Job Submission —_—
Node Status e
Resource Request —_——

MapReduceStatus - — —»

|
1
| 1
I 1
| Node 1
Il Manager :
I
Application
Master

;

1
| Node
: Manager

Hadoop MRvV1 vs. YARN - Key Differences

Feature

Resource Manager
Application Support
Scalability

Fault Tolerance

Flexibility

Hadoop MRvVI

JobTracker manages both resource
allocation and job scheduling

Supports only MapReduce

Limited due to single JobTracker
bottleneck

Single point of failure (JobTracker)

Tightly coupled with MapReduce

Hadoop v2 - YARN

ResourceManager handles resources;
ApplicationMaster manages each job

Supports multiple frameworks
(MapReduce, Spark, Tez, etc.)

Scales to much larger clusters
(10,000+ nodes)

More resilient: if an ApplicationMaster
fails, others continue

Flexible: can run batch, interactive,
streaming workloads

MapReduce 1 vs YARN
MR v1

YARN / MR v2

* YARN :Yet Another Resource Negotiator
* MR : MapReduce

06

Hadoop Programming
Basics

Anatomy of a Hadoop Job - Driver, Mapper, Reducer

Driver Program

+ Configures the job (input/output paths, mapper/reducer classes, settings)
* Submits the job to the cluster via YARN

* Monitors progress until completion

Mapper

« Processes input data record by record

« Transforms data and emits intermediate (key, value) pairs
+ Example: (word » 1) in a word count job

Reducer

* Receives all intermediate values grouped by key

« Aggregates or combines results

« Produces final output (e.g., total count per word)

‘- Reduce() l
(
)‘ Reduce()

Hadoop Job Execution Overview

*User runs a program (Driver) that defines Mapper, Reducer,
0D input/output paths
Submission *The Driver submits the job to the YARN ResourceManager

1. Job

2. Job *ResourceManager creates an ApplicationMaster for the job
Initialization *The ApplicationMaster requests containers on NodeManagers

3. Task *Containers launch Map tasks and Reduce tasks on cluster
) nodes

*Map outputs are shuffled and sorted, then sent to reducers

Execution

4, JOb_ *Reducers produce the final output written back to HDFS
Completlon *The Driver receives job completion status and logs results

Map Function Logic

Mapper processes each line independently.

import sys

for line in sys.stdin:
for word in line.strip().split():
print(f"{word}\t1")

Reduce Function Logic

import sys
current_word = None
current_count=10

for line in sys.stdin:
word, count = line.strip().split("\t")
count = int(count)

if current_word == word:
current_count += count
else:
if current_word:
print(f*{current_word}\t{current_count}")
current_word = word
current_count = count

if current_word:
print(f*{current_word}\t{current_count}")

The Driver Class

Driver configures job » submits to YARN » monitors progress.

hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \
-input /data/input \
-output /data/output \
-mapper mapper.py \
-reducer reducer.py \
-file mapper.py \
-file reducer.py

Hadoop Job Execution in the Cluster

What Happens When You Run a Job

1. Driver submits the job to the YARN ResourceManager

2. ApplicationMaster starts and requests resources from the cluster

3. Map tasks are launched on DataNodes holding the input blocks (data
locality)

4. Shuffle & Sort phase moves intermediate data to reducers

5. Reduce tasks run, results written to HDFS output directory

6. ApplicationMaster reports job completion to the Driver

07

Hadoop in Today's
Big Data World

Hadoop's Legacy and Current Role

+ Hadoop revolutionized big data storage and processing in the 2010s.

+ Today, HDFS is still used for large-scale, distributed storage.

* YARN continues to manage resources in many enterprise clusters.

« MapReduce has declined, replaced by Apache Spark, Flink, and Presto.

« Hadoop now serves as a data lake foundation, as many systems still rely on it
underneath.

Ecosystem Spark & Cloud & Hybrid

Hadoop (2005) Expansion Streaming Data Lakes
(2010) (2015) (Now)

Hadoop vs. Modern Data Architectures

Feature

Traditional Hadoop Cluster

Modern Cloud/Hybrid Systems

Deployment

On-premise servers

Cloud-based
(AWS EMR, Dataproc, HDInsight)

Storage

HDFS

Cloud storage (S3, GCS, ADLS)

Compute Engine

MapReduce, Spark-on-YARN

Serverless Spark, Flink, Beam

Scalability

Hardware scaling

Elastic scaling

Maintenance

Manual cluster management

Managed services

Hadoop in Real-World Use Today

Still used by:
- Enterprises managing petabytes of data on-premise (banks, telecom,

government).
« Cloud-managed Hadoop clusters (AWS EMR, Azure HDInsight, Google

Dataproc).
« Hybrid architectures mixing HDFS + cloud object storage.

Acts as backend storage for:
« Spark, Hive, Presto, Impala, Kafka pipelines.

Hadoop remains strong where data locality and cost control matter

A P EE'T_||
‘@ &

The Future of Hadoop

Shift from batch - real-time analytics.

Hadoop evolving toward:

« Integration with cloud-native tools (Kubernetes, object storage).

« Use as part of data lakehouse architectures (HDFS + Delta Lake / Iceberg).
Open-source community still active (Apache Hadoop 3.x+).

Future: Hadoop as a stable storage + resource layer, not the “whole stack.”

Files

" ! g

Cloud Sources s T
") m Audio/

Video/Documents

Asre gy gl D

Databases
(Cloud / On

E ; Premises)
<N

—— vwWwwWwv

Sensors, loT / Social Feeds
o~

P ~ fvo

&8
_@z" © I

Key Takeaways

« Hadoop laid the foundation for distributed data processing.
« HDFS and YARN remain critical in many infrastructures.
« The ecosystem evolved : Spark, Flink, and cloud platforms now lead in

compute.
« Hadoop's principles (scalability, fault tolerance, data locality) live on in all

modern systemes.
« The future is hybrid and cloud-intearated. but Hadoop’s DNA remains

everywhere.

.. Cost
Minimum
Network ,\

Traffic r\ / Scalability
- ‘@hadaap

Throughput \,
/ \ Flexibility

Fault

Tolerance
Speed

End of
Chapter 2

	Slide 1: Chapter 2 Hadoop Systems🐘
	Slide 2: Table of Contents
	Slide 3: Motivation for Hadoop
	Slide 4: Hadoop and Distributed Big Data Processing
	Slide 5: Why We Need Hadoop (The Challenge of Big Data)
	Slide 6: Limitations of Traditional Systems (Single-Machine Bottlenecks)
	Slide 7: Distributed Systems Approach (Many Machines Working Together)
	Slide 8: The Locality Principle - Move Computation to Data
	Slide 9: Hadoop Ecosystem The Big Picture
	Slide 10: Introducing Hadoop – Origins and Evolution
	Slide 11: Hadoop Ecosystem – Core & Supporting Components
	Slide 12: MapReduce Paradigm
	Slide 13: MapReduce – Core Processing Paradigm
	Slide 14: MapReduce Workflow – From Input to Output
	Slide 15: Conceptual Example – Word Count
	Slide 16: Strengths of MapReduce
	Slide 17: Limitations of MapReduce
	Slide 18: Table of Contents
	Slide 19: Hadoop Distributed File System (HDFS)
	Slide 20: HDFS – Distributed Storage for Big Data
	Slide 21: HDFS Architecture – NameNode & DataNodes
	Slide 22: HDFS Architecture – Data storage
	Slide 23: Hadoop Architecture Evolution
	Slide 24: Hadoop Cluster Architecture – Nodes and Roles
	Slide 25: Hadoop v1 – MapReduce-Centric Architecture
	Slide 26: Hadoop v2 – YARN (Yet Another Resource Negotiator)
	Slide 27: Hadoop - YARN
	Slide 28: Hadoop MRv1 vs. YARN – Key Differences
	Slide 29: MapReduce 1 vs YARN
	Slide 30: Hadoop Programming Basics
	Slide 31: Anatomy of a Hadoop Job – Driver, Mapper, Reducer
	Slide 32: Hadoop Job Execution Overview
	Slide 33: Map Function Logic
	Slide 34: Reduce Function Logic
	Slide 35: The Driver Class
	Slide 36: Hadoop Job Execution in the Cluster
	Slide 37: Hadoop in Today’s Big Data World
	Slide 38: Hadoop’s Legacy and Current Role
	Slide 39: Hadoop vs. Modern Data Architectures
	Slide 40: Hadoop in Real-World Use Today
	Slide 41: The Future of Hadoop
	Slide 42: Key Takeaways
	Slide 43: End of Chapter 2

