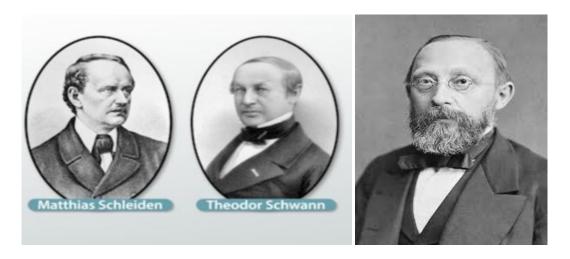
Chapter 6: The Nineteenth Century: Major Advances in Biology

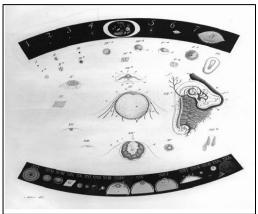
Introduction


The **19th century** was a turning point in the history of biology. With the improvement of the **microscope** and the development of new **experimental methods**, scientists formulated fundamental theories that became the basis of **modern biology**. These advances included the **cell theory**, the birth of **embryology**, the emergence of **molecular biology**, and the foundation of **genetics**.

1. Cell Theory and Microscopy

- Improvements in **microscopy** allowed the detailed observation of tissues and cells.
- Matthias Schleiden (1838) (botanist) and Theodor Schwann (1839) (zoologist) formulated the cell theory, stating that:
 - 1. All living organisms are made of **cells**.
 - 2. The **cell is the basic unit of structure and function** in living beings.
- **Rudolf Virchow** (1855) expanded the theory with his famous principle:

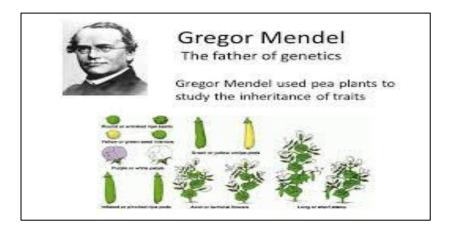
"Omnis cellula e cellula" → Every cell arises from a pre-existing cell.


• This theory laid the foundation for **cytology** and modern **cell biology**.

2. Sexual Embryology

• The 19th century marked the beginning of **scientific embryology**.

- Karl Ernst von Baer (1827) discovered the mammalian egg and described the stages of embryonic development.
- He formulated Baer's Laws of Embryology, including:
 - o Development proceeds from the **general to the specific**.
 - o Embryos of related species share **common stages** in early development.
- This work helped establish the role of **gametes (egg and sperm)** in reproduction and the continuity of **sexual generation**.


3. Molecular Biology (Early Foundations)

- Although the term "molecular biology" came later (20th c.), the **19th century** provided its foundations.
- Friedrich Miescher (1869) discovered a substance he called "nuclein" (later identified as DNA) in the nuclei of white blood cells.
- This discovery marked the beginning of the study of **nucleic acids**.
- Advances in biochemistry during this century began to explain the chemical nature of life processes.

- 4. Genetics and DNA Foundations
- Gregor Mendel (1866), through experiments on pea plants, established the laws of inheritance:
 - Law of Segregation → Each trait is determined by pairs of factors (genes), which segregate during gamete formation.
 - 2. **Law of Independent Assortment** → Traits are inherited independently of one another (when on different chromosomes).
- Mendel's work went largely unnoticed until it was rediscovered in 1900.
- Meanwhile, cytologists identified the **chromosomes** and linked them to heredity, preparing the way for **chromosomal theory of inheritance** in the early 20th century.

Summary

The **19th century** transformed biology into a modern science:

- Cell Theory → All living organisms are composed of cells (Schleiden, Schwann, Virchow).
- **Sexual Embryology** → Discovery of the **egg**, stages of embryonic development, and laws of embryology (von Baer).
- Molecular Biology Foundations → Discovery of DNA (nuclein) by Miescher.
- Genetics → Mendel's laws of inheritance laid the groundwork for classical genetics.

Together, these discoveries established the **cell, the gene, and the embryo** as the three central pillars of **modern biology**.