CHAPTER 1: Introduction to the History of Biological Sciences

Introduction:

The **history of biological sciences** reflects humanity's continuous quest to understand life in all its forms. From the earliest observations of nature in **prehistoric times**, when humans relied on plants and animals for survival, to the development of **systematic natural philosophy** in ancient civilizations, biology has always been central to human thought.

In **Antiquity**, scholars such as **Aristotle**, **Hippocrates**, **and Galen** laid the foundations of anatomy, physiology, and natural classification. The **Middle Ages and the Renaissance** revived and expanded this knowledge through translation, experimentation, and the birth of scientific inquiry.

By the **seventeenth and eighteenth centuries**, the invention of the **microscope**, the rise of **taxonomy** (Linnaeus), and the discovery of circulation (Harvey) transformed biology into a more empirical science. The **nineteenth century** was marked by the formulation of the **cell theory**, Darwin's **theory of evolution by natural selection**, and the beginnings of **genetics**, setting the stage for modern biology.

The **twentieth century** brought an unprecedented revolution: the rise of **molecular biology**, **genetics**, **ecology**, **biotechnology**, **and medicine**. Discoveries such as the **DNA double helix**, the **genetic code**, antibiotics, vaccines, and later **gene therapy and cloning** redefined the scope of biology, while the **Human Genome Project** ushered in the genomic era.

Today, biology is a **multidisciplinary and global science**, deeply interconnected with **chemistry**, **physics**, **informatics**, **and environmental studies**. Its history illustrates not only scientific progress but also the interaction between **knowledge**, **culture**, **technology**, **and ethics**, showing how humanity's understanding of life has evolved through observation, experimentation, and innovation.

1. Science: Definition and Scope

The word **science** comes from the Latin *scientia*, meaning *knowledge* (from *scire*, "to know"). Science is the **systematic study of the natural world**, based on observation, experimentation,

and reasoning. It is a **body of knowledge of universal value**, aiming to explain phenomena and discover the laws governing nature.

2. What is Biology?

The term **biology** derives from the Greek words *bios* (life) and *logos* (study). Biology is **the science of life**—the study of living organisms and those that once lived. It investigates their **structure**, **function**, **growth**, **reproduction**, **evolution**, **and interactions** with the environment.

3. History of Science

Science has developed through the **progressive transformation of human thought**, evolving from ancient speculations to a modern, evidence-based discipline. The **history of science** traces this evolution of knowledge, showing how humans gradually moved from intuitive explanations to experimental methods.

4. Key Concepts in Knowledge

- **Knowledge**: Understanding the properties and characteristics of phenomena, such as the laws of nature.
- **Intuition**: Immediate awareness of a truth without reasoning or direct experience.
- **Technology**: The practical application of scientific knowledge to improve living standards and the human environment.

5. Major Disciplines of Biology

Biology covers all levels of life, from **molecules and cells** to **organisms, populations, and ecosystems**. Its many branches often overlap and complement each other.

a. Biochemistry

The study of the chemical processes of life: metabolism, enzymes, and the molecules of living organisms (proteins, lipids, carbohydrates, nucleic acids). **Pioneers**:

- Justus von Liebig (1803–1873): Discovered the role of nitrogen in plant nutrition and founded agricultural chemistry, explaining how minerals and fertilizers help plants grow.
- **Melvin Calvin (1911–1997):** Discovered the **Calvin Cycle**, the biochemical pathway by which plants convert carbon dioxide into glucose during photosynthesis.

b. Microbiology

Focuses on microscopic organisms—bacteria, viruses, protozoa, certain fungi, and unicellular algae. It examines their structure, metabolism, life cycles, and roles in health and disease.

Pioneers:

- Antonie van Leeuwenhoek, developer of early microscopes.
- Louis Pasteur, founder of modern microbiology.

c. Zoology

The study of animals, including their anatomy, physiology, behavior, classification, and evolution.

Pioneers:

- Aristotle, first systematic observer of animals.
- Georges Cuvier, founder of comparative anatomy.

d. Botany

The study of plants, from their structure and physiology to their classification and ecology.

Pioneers:

- Theophrastus, father of botany.
- Carl von Linné (Linnaeus), creator of modern taxonomy.

e. Ecology

The study of relationships between living organisms and their environment.

Pioneers:

- Alexander von Humboldt, founder of biogeography.
- Ernst Haeckel, who coined the term "ecology."

f. Biophysics

Applies physical principles to explain biological processes such as cell mechanics, energy transfer, and molecular interactions. This field bridges biology, physics, and chemistry.