
CHAPTER 2

IMPROPER INTEGRALS

The function that generate the Riemann integrals of chapter1 are continous on closed intervals.
Thus, the functions are bounded and intervals are finite. Integrals of functions with these char-
acteristics are called proper integrals. When one or more of these restrictions is relaxed, the
integrals are said to be improper.
Categories of improper integrals are established below.
The integral

∫ b
a f (x)dx is called an improper integral if

1. a = ∞ or b = ∞ or both, i.e, one or both integration limitis is infinite,

2. f (x) is unbounded at one or more points of a ≤ x ≤ b such points are called singularities
of f (x).

Integrals correspoding to (1) and (2) are called improper integrals of the first and second kinds,
respectively. Integrals with both conditions (1) and (2) are called improper integrals of the third
kind.

Example 1
∫ ∞

0 sinx2dx is an improper integral of the first kind.

Example 2
∫ 5

0
x

x−2 dx is an improper integral of the second kind.

Example 3
∫ ∞

0
ex

x dx is an improper integral of the third kind.

2.1 Improper integrals of the first kind (unbounded intervals)

Definition 2.1 Integrals with infinite limits of integration are called improper integrals of the first kind.
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1. If f is integrable on [a,∞[, then ∫ ∞

a
f (x)dx = lim

x−→∞

∫ x

a
f (t)dt

.

2. If f is integrable on ]−∞,b], then∫ b

−∞
f (x)dx = lim

x−→−∞

∫ b

x
f (t)dt

.

3. If f is integrable on ]−∞,∞[, then∫ ∞

−∞
f (x)dx =

∫ c

−∞
f (x)dx +

∫ ∞

c
f (x)dx

= lim
x−→−∞

∫ c

x
f (t)dt + lim

x−→∞

∫ x

c
f (t)dt.

where c is any real number.

In each case,if the limit exists and is finite, the improper integral is said to be convergent, if
otherwise, it is called divergent.

Example 4 Determine if the following integral is convergent or divergent∫ +∞

0
e−tdt.

∫ +∞

0
e−tdt = lim

x−→+∞

∫ x

0
e−tdt

= lim
x−→+∞

[
−e−t]x

0

= lim
x−→+∞

(
1− e−x)

=1.

So the improper integral is convergent.

Example 5 Investigate the convergece of ∫ +∞

0
sintdt

∫ +∞

0
sintdt = lim

x−→+∞
sintdt

= lim
x−→+∞

[−cost]x0

= lim
x−→+∞

(1− cosx)

=1− lim
x−→+∞

cosx does not exist

xn = 2nπ⇒ cosxn = cos (2nπ) = 1−→ 1
xn = π

2 + 2nπ⇒ cosxn = cos
(

π
2 + 2nπ

)
= 0−→ 0

The limit does not exist. So the improper integral is divergent.
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Example 6 (Riemann integral)∫ +∞

1

dt
tα

= lim
x−→+∞

∫ x

1

dt
tα

= lim
x−→+∞

[
t1−α

1− α

]x

1
, α , 1

lim
x−→+∞

[lnt]x1 , α = 1

= lim
x−→+∞

x1−α

1− α
− 1

1− α
, α , 1

lim
x−→+∞

lnx, α = 1

=
−1

1− α
, α > 1 convergent

∞, α ≤ 1 divergent.

2.2 Improper integrals of the second kind

Definition 2.2 Integrals of functions that become infinite at a point within the interval of integration
are called improper integrals of thee second kind.

1. If f (x) becomes unbounded only at the point a of the interval [a,b], then∫ b

a
f (x)dx = lim

x−→a+

∫ b

x
f (t)dt.

2. If f (x) becomes unbounded only at the point b of the interval [a,b] , then∫ b

a
f (x)dx = lim

x−→b−

∫ x

a
f (t)dt.

3. If f (x) becomes unbounded only at an interior point c, of the interval [a,b], then∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)

= lim
x−→c−

∫ x

a
f (t)dt + lim

x−→c+

∫ b

x
f (t)dt.

In each case, if the limit is finite, the improper integral converges and that limit is the value of
the improper integral. If the limit fails to exist, the improper integral diverges.

Example 7 Determine if the integral converges or diverges. If the integral converges determine its value.∫ 1

0

dx√
x

.
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0 is the singular point. So the improper integral is the second kind.∫ 1

0

dx√
x
= lim

x−→0+

∫ 1

x

dt√
t

= lim
x−→0+

[
2
√

t
]1

x

= lim
x−→0+

(
2− 2

√
x
)

=2.

The limit is finite, so the integral converges.

Example 8 Investigate the convergence of ∫ 5

2

dx
x− 5

5 is the singular point. So the improper integral is of the second kind.∫ 5

2

dx
x− 5

= lim
x−→5

∫ x

2

dt
t− 5

= lim
x−→5

[ln|t− 5|]x2
= lim

x−→5
ln|x− 5| − ln3

=−∞.

The limit is infinite, so the improper integral is divergent.

Example 9 (Riemann integral) For what value of α does the integral∫ 1

0

dx
xα

dx

converges?When the integral does converge, What is its value?

∫ 1

0

dx
xα

=

{
limx−→0

∫ 1
x

dt
tα α , 1

limx−→0
∫ 1

x
dt
t α = 1

=

{
limx−→0

[
t1−α

1−α

]
α , 1

limx−→0 [lnt]1x α = 1

=

{
limx−→0

1
1−α −

x1−α

1−α α , 1
limx−→0−lnx α = 1

=

{ 1
1−α α < 1, the integral converges
∞ α ≥ 1, the integral diverges.
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Convergence test

Remark 2.1 Convergence tests determine whether an improper integral converges or diverges.

Theorem 2.2.1 (Comparison test)
Let f and g be two positive and integrable functions on ]a,b[ where b = ∞ or f (b) = ∞ such that
0≤ f (x) ≤ g (x) for every x ∈ ]a,b[, then

0≤
∫ b

a
f (x)dx ≤

∫ b

a
g (x)dx.

The inequalities above imply the following statements:

a)
∫ b

a g (x)dx converges⇒
∫ b

a f (x)dx converges;

b)
∫ b

a f (x)dx diverges⇒
∫ b

a g (x)dx diverges.

Example 10 Determine wether I =
∫ ∞

1 e−x2
dx converges or diverges.

1≤ x⇒ x ≤ x2⇒−x2 ≤ −x⇒ e−x2 ≤ e−x.

The last inequality follows because exp is an increasing function.

0≤
∫ ∞

1
e−x2

dx ≤
∫ ∞

1
exdx = lim

x−→∞

[
−e−t]x

1 =
1
e

.

So by comparison test the integral converges.

Theorem 2.2.2 (Quotient test)
Let f and g be two positive and integrable functions on ]a,b[ where b = ∞ or f (b) = ∞ such that

lim
x−→+∞

f (x)
g (x)

= L

1. If L , 0 and L ,∞, then the integrals
∫ b

a f (x)dx,
∫ b

a g (x)dx both converge or both diverge.

2. If L = 0 and
∫ b

a g (x)dx converges, then
∫ b

a f (x)dx converges.

3. If L = ∞ and
∫ b

a g (x)dx diverges, then
∫ b

a f (x)dx diverges.

Example 11 Determine wether I =
∫ ∞

1
dx√
x6+1

converges or diverges. First, dertermine the behavior of
the rational function as x −→∞;

1√
x6 + 1

−→ 1
x3 , as x −→∞.

Then,chose the limit comparaison function g (x) = 1
x3

lim
x−→∞

f (x)
g (x)

= lim
x−→∞

1/
√

x6 + 1
1/x3 = lim

x−→∞

x3
√

x6 + 1
= 1.

Since
∫ +∞

1
1
x3 dx converges, then

∫ +∞
1

dx√
x6+1

converges too.
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Example 12 Determine wether I =
∫ ∞

2
x2−x−1

x3+x
1
3

dx converges or diverges. we have f (x) = x2−x−1

x3+x
1
3

and

g (x) = 1
x

lim
x−→∞

f (x)
g (x)

= lim
x−→∞

x2−x−1

x3+x
1
3

1/x
= lim

x−→∞

x3 − x2 − x

x3 + x
1
3

= 1

The integral
∫ ∞

2
1
x dx diverges, thus

∫ ∞
2 f (x)dx must also diverge.

Definition 2.3 Let f be an integrable function on [a,b[. We say that the improper integral
∫ b

a f (x)dx
is absolutely convergent if

∫ b
a | f (x) |dx converge.

Theorem 2.2.3 Every absolutely convergent integral is convergent.

Example 13 Let I =
∫ ∞

1
sinx
x2 dx be an improper integral of the first kind.

We have
∣∣∣ sinx

x2

∣∣∣ ≤ 1
x2 for all x ∈ [1,+∞[∫ +∞

1
1
x2 dx converges (Riemann integral α = 2 > 1). So by comparison test

∫ ∞
1

∣∣∣ sinx
x2

∣∣∣dx is convergent,
thus I is absolutely convergent.
Since I is absolutely convergent then I converges.

Definition 2.4 Let f be an integrable function on [a,b[. If
∫ b

a f (x)dx converges but
∫ b

a | f (x) |dx
diverges, then

∫ b
a f (x)dx is called conditionally convergent.

Example 14 I =
∫ +∞

1
sint

t dt is conditionally convergent, so by integration by parts, we get

f (t) = 1
t f ′ (t) = −1

t2

g′ (t) = sint g (t) = −cost

I = lim
x−→+∞

[
−cost

t

]x

1
−
∫ x

1

cost
t2 dt

= lim
x−→+∞

cos1− cosx
x
−
∫ x

1

cost
t2 dt

=cos1−
∫ +∞

1

cost
t2 dt,

(
since lim

x−→+∞

cosx
x

= 0
)

∫ +∞
1

∣∣∣ cost
t2

∣∣∣dt≤
∫ +∞

1
1
t2 dt, (Riemann integral α= 2> 1, so it is converges), so by comparison

∫ +∞
1

∣∣∣ cost
t2

∣∣∣dt

converges thus
∫ +∞

1
cost
t2 dt is convergent. Hence I converges.

We have |sint| ≥ |sint|2 for all t ≥ 1⇒ |sint|
t ≥

|sint|2
t = 1−cos(2t)

2t∫ +∞

1

∣∣∣∣ sint
t

∣∣∣∣dt ≥
∫ +∞

1

dt
2t
−
∫ +∞

1

cos (2t)
2t

dt.

We have
∫ +∞

1
1
t dt is divergent so we will prove that

∫ +∞
1

cos(2t)
2t dt converges.
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f (t) = 1
t f ′ (t) = −1

t2

g′ (t) = cos (2t) g (t) = 1
2 sin (2t)

∫ +∞

1

cos (2t)
2t

dt = lim
x−→+∞

[
sin (2t)

4t

]x

1
+
∫ x

1

sin (2t)
4t2 dt

= lim
x−→+∞

sin (2x)
4x

− sin2
4

+
∫ x

1

sin (2t)
4t2 dt

=− sin2
4

+
∫ +∞

1

sin (2t)
4t2 dt,

(
since lim

x−→+∞

sin (2x)
4x

= 0
)

.

∫ +∞
1

∣∣∣ sin(2t)
4t2

∣∣∣dt ≤
∫ +∞

1
1

4t2 dt, (Riemann integral converges because α = 2 > 1 ), so by comparison∫ +∞
1

∣∣∣ sin(2t)
4t2

∣∣∣dt converges thus
∫ +∞

1
sin(2t)

4t2 dt is convergent. Hence
∫ +∞

1
cos(2t)

2t dt converges but
∫ +∞

1
1
2t dt,

so
∫ +∞

1

∣∣∣ sint
t

∣∣∣dt diverges.

Theorem 2.2.4 (Abel’s test)
Let f , g : [a,b[ −→R ba two integrable functions where

1. f is positive, decreasing and its limit is zero at b (b is singularity point or infini).

2. ∃M > 0 such that ∀x ∈ [a,b[ ∣∣∣∣∫ x

a
g (t)dt

∣∣∣∣ ≤ M.

Then
∫ b

a f (t) g (t)dt converges.

Example 15

I =
∫ +∞

1

cost
tα

dt, α > 0.

f : [1,+∞[ −→R, t −→ 1
tα ,

g : [1,+∞[ −→R, t −→ cost

lim
t−→+∞

f (t)dt = lim
t−→+∞

1
tα

= 0,

f ′ (t) =
−α

tα + 1
< 0, so f is decreasing,

∀x ∈ [1,+∞[ ,
∣∣∣∣∫ x

1
costdt

∣∣∣∣ = ∣∣[sint]x1
∣∣

= |sinx− sin1|
≤ |sinx|+ |sin1|
≤1 + 1
≤2.

So by Abel’s test I is convergent.
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