Academic year 2025-2026

Department of Mathematics

Analysis 3 (2nd Year in Mathematics)

Solution of Series of Exercises 2

Solution of Exercise 1

Let us study the simple convergence and uniform convergence of the following sequences of functions:

1.
$$f_n(x) = \frac{1 - nx^2}{1 + nx^2}$$
, $E_1 = \mathbb{R}$ then on $E_2 = [a, +\infty[(a > 0).$

1.1 Simple Convergence :

If x = 0, $f_n(0) = 1$ and if $x \ne 0$, $\lim f_n(x) = -1$. the sequence of fonctions (f_n) is therefore simply convergente on $E_1 = [-a, a]$ towards f, where $f(x) = \begin{cases} 1, & \text{if } x = 0, \\ -1, & \text{if } x \ne 0 \end{cases}$.

1.2 Uniform Convergence:

1.2.1. On $E_1 = \mathbb{R}$. The function f is not continuous on \mathbb{R} , it follows that (f_n) doesn't converge uniformly on E_1 .

1.2.2. On $E_2 = [a, +\infty[(a > 0))$. We have

$$|f_n(x) - f(x)| = \left| \frac{1 - nx^2}{1 + nx^2} - (-1) \right|$$
$$= \left| \frac{2}{1 + nx^2} \right|$$
$$\leq \frac{2}{1 + na^2}.$$

This later quantity tends towards 0, and the sequence of functions converges uniformly to -1 on $E_2 = [a, +\infty[$ (a > 0).

2.
$$f_n(x) = \frac{x}{1 + nx}$$
, $E_3 = [0, 1]$.

2.1 Simple Convergence:

If x = 0, $f_n(0) = 0$ and if $x \neq 0$, $\lim f_n(x) = 0$.

The sequence of functions (f_n) is therefore simply convergent on $E_3 = [0,1]$ to the zero function f = 0.

2.2 Uniform Convergence:

Since each function $x \mapsto f_n(x) - f(x) = \frac{x}{1+nx}$, is increasing on E_3 , we then have $\sup |f_n(x) - f(x)| = \frac{1}{1+n}$. This later quantity tends to 0, and the sequence of functions converges uniformly to 0 on E_3

Solution of Exercise 1

3.
$$f_n(x) = \cos(\frac{5 + nx}{n}), E_4 = \mathbb{R}.$$

3.1 Simple Convergence :

If
$$x = 0$$
, $f_n(0) = \cos(\frac{5}{n})$, and $\lim f_n(0) = 1$.

When $x \neq 0$, $\lim f_n(x) = \cos(x)$.

In all cases, the sequence of functions (f_n) is therefore simply convergent on $E_4 = \mathbb{R}$ to f, where $f(x) = \cos(x)$.

3.2 Uniform Convergence:

We have

$$|f_n(x) - f(x)| = \left| \cos(\frac{5 + nx}{n}) - \cos(x) \right|$$

$$= \left| \cos(x) \times \cos(\frac{5}{n}) - \sin(x) \times \sin(\frac{5}{n}) - \cos(x) \right|$$

$$\leq \left| \cos(x) \right| \times \left(\left| \cos(\frac{5}{n}) - 1 \right| + \left| \sin(x) \right| \times \left| \sin(\frac{5}{n}) \right| \right)$$

$$\leq \frac{25}{2n^2} + \frac{5}{n}.$$

This later quantity tends to 0, and the sequence of functions converges uniformly to 0 on E_4 .

4.
$$f_n(x) = \frac{\sin(nx)}{nx}$$
 and $f_n(0) = 0$, $E_5 = \mathbb{R}$ then on $E_6 = [a, +\infty[$ $(a > 0)$

4.1 Simple Convergence:

If x = 0, $f_n(0) = 0 \Rightarrow \lim f_n(0) = 0$, and if $x \neq 0$, $\lim f_n(x) = 0$. the sequence of functions (f_n) is therefore simply convergent on \mathbb{R} to f(x) = 0.

4.2 Uniform Convergence:

4.2.1 On $E_5 = \mathbb{R}$. Let's consider the sequence of points $(x_n = \frac{\pi}{2n})$. We have $|f_n(x_n) - f(x_n)| = \frac{2}{\pi} \rightarrow 0$. It follows that (f_n) doesn't converge uniformly on $E_5 = \mathbb{R}$.

4.2.2. On $E_6 = [a, +\infty[(a > 0)]$. We have

$$\left|f_n(x)-f(x)\right| = \left|\frac{\sin(nx)}{nx}\right| \le \frac{1}{nx} \le \frac{1}{na}.$$

This later quantity tends to 0, and the sequence of funtions converges uniformly to 0 on $E_6 = [a, +\infty[(a > 0).$

2

Solution of Exercise 1

5. $f_n(x) = x^n(1-x), E_7 = [0,1].$

5.1 Simple Convergence:

If x = 0 or x = 1, $f_n(0) = f_n(1) = 0$, and the sequence converges to 0. If $x \in [0, 1[$, $\lim_{n \to +\infty} f_n(x) = 0$.

Finally, the sequence (f_n) converges simply on [0,1] and this limit is the zero function f(x) = 0.

5.2 Uniform Convergence:

By performing a simple calculation, we find

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = a_n = \frac{1}{n+1} \left(\frac{n}{n+1} \right)^n.$$

This later quantity equivalent in neighborhood of infinity by $\frac{1}{ne}$.

Since this quantity tends to 0, when n tends to $+\infty$, therefore the considered sequence converges uniformly to 0 on [0,1].

Solution of Exercise 2

Let us consider the series of functions:

$$f_n(x) = \sin^2(x)\cos^n(x)$$
, for $n \ge 1$ and $x \in \left[0, \frac{\pi}{2}\right]$.

1. If x = 0, $\sum_{n \ge 0} f_n(x) = 0$ and the series converges.

If $x \in \left]0, \frac{\pi}{2}\right]$, the series $\sum_{n\geq 0} f_n$, is geometric with ratio $q = \cos(x) \in [0, 1[$, and therefore it converges on $\in \left]0, \frac{\pi}{2}\right]$.

Finally:

$$S(x) = \begin{cases} \frac{\sin^2(x)}{1 - \cos(x)}, & \text{if } x \in \left] 0, \frac{\pi}{2} \right] \\ 0, & \text{if } x = 0. \end{cases}$$
 (1)

2. Since *S* is not continuous on the segment $\left[0, \frac{\pi}{2}\right]$, the series $\sum_{n\geq 0} f_n$, is therefore not uniformly convergent on this segment.

3

Solution of Exercise 3

Let us consider the series of functions:

$$f_n(x) = \frac{x}{(1+x^2)^n}$$
, for $n \ge 1$ and $x \in \mathbb{R}$,

1. If x = 0, $\sum_{n \ge 1} f_n(x) = 0$, the series is simply convergent.

If $x \neq 0$,, the series $\sum_{n\geq 1} f_n(x)$ is geometric series with ratio $q = \frac{1}{1+x^2} < 1$, and therefore it converges for all $x \neq 0$.

Finally:

$$S(x) = \begin{cases} \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0. \end{cases}$$
 (2)

- 2. Since *S* is not continuous at the point 0, the series $\sum_{n\geq 1} f_n$, is therefore not uniformly convergent on \mathbb{R} .
- 3. Let's stydy the normal convergence on [a, b] (0 < a < b). We have

$$\begin{aligned} \left| f_n(x) \right| &= \frac{x}{(1+x^2)^n} \\ &\leq \frac{x}{(1+a^2)^n} \\ &\leq \frac{b}{(1+a^2)^n}, \, \forall x \in [a,b], \end{aligned}$$

which is the general term of convergent geometric series, and so $\sum_{n\geq 1} f_n$ converges uniformly on [a,b].

4. Calculate $\sum_{n\geq 1} \int_1^e f_n(x) dx$:

Since the series is unifomly convergent on [1, e], it is therefore integrable term by term on this segment. We then have

$$\sum_{n\geq 1} \int_{1}^{e} f_n(x) dx = \int_{1}^{e} \sum_{n\geq 1} f_n(x) dx$$
$$= \int_{1}^{e} \frac{dx}{x}$$
$$= 1.$$

4