Series of Exercises 2

Exercise 1

Let a be a positive real number and let (f_n) be a sequence of functions defined on the set $E_i \in \mathbb{R}$. Study the simple and uniform convergence of this sequence of functions on E_i in the following cases:

$$f_n(x) = \frac{1 - nx^2}{1 + nx^2}, \quad E_1 = \mathbb{R}, \text{ then on } E_2 = [a, +\infty[.$$

2
$$f_n(x) = \frac{x}{1+nx}$$
, $E_3 = [0,1]$.

$$f_n(x) = \cos(\frac{5+nx}{n}), \quad E_4 = \mathbb{R}.$$

$$f_n(x) = \frac{\sin(nx)}{nx}, f_n(0) = 0, \ E_5 = \mathbb{R}, \text{ then on } E_6 = [a, +\infty[.$$

6
$$f_n(x) = x^n(1-x), E_7 = [0,1].$$

Exercise 2

Consider the series of functions with general term:

$$f_n(x) = \sin^2(x)\cos^n(x)$$
, for $n \ge 1$ and $x \in \left[0, \frac{\pi}{2}\right]$.

- Prove that the series of functions $\sum f_n(x)$ converges simply on $\left[0, \frac{\pi}{2}\right]$ and calculate its sum.
- **2** Is the series uniformly convergent on $\left[0, \frac{\pi}{2}\right]$?

Exercise 3

Consider the series of functions with general term:

$$f_n(x) = \frac{x}{(1+x^2)^n}, \ n \ge 1 \text{ and } x \in \mathbb{R}.$$

- **1** Prove that the series of functions $\sum f_n(x)$ converges simply on \mathbb{R} and calculate its sum.
- **2** Is the series uniformly convergent on \mathbb{R} ?
- **3** Study the normal convergence on [a, b], then on $[a, +\infty[$, (0 < a < b).
- **4** Calculate $\sum_{n\geq 1} \int_1^e f_n(x) dx$.