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Chapter 1

Sequences and series of

functions

1.1 Sequences of functions

Let k be one of the fields R or C and let E and F be two non-empty subsets

of k.

Definition 1.1.1. We call a sequence of functions any application fn: N → £,

where £ = £(E,F) is the set of applications of E in F.

1.1.1 Simple convergence

In general, to study the simple convergence of a sequence of functions fn(x)

on a subset E of R, we will try to fix the real x and we will study the

corresponding numerical sequence.

Definition 1.1.2. A sequence of functions ( fn)n∈N is simply convergent on E to

a function f (x0), when the numerical sequences ( fn(x0))n∈N is convergent, for all

1
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x0 ∈ E. We thus define a function f on the domain E by:

f (x) = lim
n→+∞

fn(x). (1.1)

In this case, the function f is called the simple limit of the sequence of functions

( fn)n∈N.

Example 1.1.1. Consider the sequence of functions fn defined on R by

fn(x) =
x

x2 + n
, n ∈N. (1.2)

If x = 0, fn(0) = 0, and the sequence converges to 0, and if x , 0, limn→+∞ fn(x) =

limn→+∞
x
n

= 0.

Finally, the sequence fn converges simply on R, and its limit is f (x) = 0.

1.1.2 Uniform convergence

Definition 1.1.3. We say that the sequence of functions ( fn)n∈N converges uni-

formly on E to a function f if and only if:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E, we have
∣∣∣ fn(x) − f (x)

∣∣∣ < ε. (1.3)

Remak 1.1. This integer n0 obviously depends only on ε and not on x.While, if n0

depends on both x and ε, we will say that the convergence is simple on E.

Remak 1.2. Uniform convergence on E implies simple convergence on E.

1.1.3 A sufficient condition for uniform conver-

gence

Proposition 1.1.1. Let ( fn)n∈N be a sequence of functions which converges simply

on E to a function f . If there exists a positive sequence (bn) that converges to 0, such

that

∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < bn, (1.4)

then the sequence of functions ( fn)n∈N is uniformly convergent on E.
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Proof. Suppose that bn tends to 0, when n→ +∞, that is:

∀ε > 0, ∃n0 ∈N, such that ∀n ≥ n0 we have bn <
ε
2

. (1.5)

Since: ∣∣∣ fn(x) − f (x)
∣∣∣ < bn <

ε
2
, for all x ∈ E. (1.6)

We find

sup
x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ ≤ ε

2
< ε, for all x ∈ E. (1.7)

�

1.1.4 A necessary and sufficient condition for uni-

form convergence

Proposition 1.1.2. Let ( fn)n∈N be a sequence of functions that converges simply on

E to a function f . For ( fn)n∈N to be uniformly convergent to f on E, it is necessary

and sufficient that the numerical sequence (an) which is defined by:

an = sup
x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ , (1.8)

is convergent to 0.

Proof. ⇒ Suppose that ( fn)n∈N be uniformly convergent to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
2

. (1.9)

As a result:

an = sup
x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ ≤ ε

2
< ε. (1.10)

⇐ Now, let’s assume that an tends to 0, when n→ +∞, we then have:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0, an < ε. (1.11)

As a result:∣∣∣ fn(x) − f (x)
∣∣∣ ≤ sup

x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ = an < ε, for all x ∈ E. (1.12)

�
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Remak 1.3. A sufficient condition for the sequence of functions ( fn)n∈N doesn’t

converge uniformly to f on E is the existence of a sequence of points (xn) ⊂ E,

verifying: ∣∣∣ fn(xn) − f (xn)
∣∣∣9 0, when n→ +∞. (1.13)

Example 1.1.2. Let the sequence of functions fn be defined on [0, 1] by:

fn(x) = xn(1 − x), n ∈N. (1.14)

* If x = 0 or x = 1, fn(0) = fn(1) = 0, and the sequence converges to 0.

* If x ∈ ]0, 1[ , limn→+∞ fn(x) = 0.

Finally, the sequence fn simply converges on [0, 1] and its limit is the zero function

f (x) = 0.

By performing a simple calculation, we find

sup
x∈[0,1]

∣∣∣ fn(x) − f (x)
∣∣∣ = an, such that an =

1
n + 1

( n
n + 1

)n
. (1.15)

This last quantity is equivalent to the neighborhood of infinity by
1
ne
. Since this

quantity tends to 0, when n tends to +∞, the sequence of functions considered

converges uniformly to 0 on the segment [0, 1] .

1.1.5 Cauchy criterion for uniform convergence

Proposition 1.1.3. For the sequence of functions ( fn)n∈N to be uniformly conver-

gent to f on E, it is necessary and sufficient that:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0 and ∀x ∈ E,
∣∣∣ fp(x) − fq(x)

∣∣∣ < ε.
(1.16)

Proof. ⇒ Suppose that ( fn)n∈N be uniformly convergent to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
2

. (1.17)

Let ε > 0, then for all p > q ≥ n0, we have:∣∣∣ fp(x) − fq(x)
∣∣∣ ≤ ∣∣∣ fp(x) − f (x)

∣∣∣ +
∣∣∣ fq(x) − f (x)

∣∣∣
<

ε
2

+
ε
2

= ε, for all x ∈ E.



Smail KAOUACHE. Courses of sequences and series of functions (2025/2026) 5

⇐ Now let’s assume that:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0 and ∀x ∈ E,
∣∣∣ fp(x) − fq(x)

∣∣∣ < ε.
(1.18)

Let p tend towards +∞, we fin the result. �

1.1.6 Properties of sequences of functions

Continuity

Proposition 1.1.4. Let ( fn) be a sequence of continuous functions on a segment

[a, b] , converging uniformly on the same segment to a function f . Then f is a

continuous function on [a, b] .

Proof. Let x0 be any point of [a, b] .

fn is continuous at the point x0, then:

∀ε > 0, ∃δ > 0, ∀x ∈ [a, b] , |x − x0| < δ⇒
∣∣∣ fn(x) − fn(x0)

∣∣∣ < ε
3

. (1.19)

( fn)n∈N converges uniformly to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
3

. (1.20)

We can write:∣∣∣ f (x) − f (x0)
∣∣∣ =

∣∣∣ f (x) − fn(x) + fn(x) − fn(x0) + fn(x0) − f (x0)
∣∣∣∣∣∣ f (x) − fn(x)

∣∣∣ +
∣∣∣ fn(x) − fn(x0)

∣∣∣ +
∣∣∣ fn(x0) − f (x0)

∣∣∣
<

ε
3

+
ε
3

+
ε
3

= ε.

�

Remak 1.4. Under the conditions of the previous proposition, we can write:

lim
x→x0

lim
n→+∞

fn(x) = lim
n→+∞

lim
x→x0

fn(x) = f (x0). (1.21)
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Integrability

Proposition 1.1.5. Let ( fn) be a sequence of continuous functions on a segment

[a, b] , converging uniformly on the same segment to a function f . Then f is an

integrable function on [a, b], and moreover:∫ b

a
f (x)dx = lim

n→+∞

∫ b

a
fn(x)dx. (1.22)

Proof. Under the assumptions of proposition 1.1.5, the uniform limit f is also

continuous, which ensures the integrability of fn(x) and f .

( fn)n∈N converges uniformly to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
b − a

. (1.23)

We can write:∣∣∣∣∣∣
∫ b

a
fn(x)dx −

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣( fn(x) − f (x
)∣∣∣ dx

<
ε

b − a

∣∣∣∣∣∣
∫ b

a
dx

∣∣∣∣∣∣ = ε.

�

Corollary 1.1.1. Under the assumptions of proposition 1.1.5, we deduce that the

sequence of integrals
(∫ x

a fn(y)dy
)

n
is uniformly convergent to

(∫ x

a f (y)dy
)

n
, for all

x ∈ [a, b] .

Proof. Since the integer n0 in the relation (1.23) does not depend on b, it

suffices to replace b by x. �

Differentiability

Proposition 1.1.6. Let ( fn) be a sequence of functions defined on the segment [a, b]

and verify the following three conditions:

1. fn, n = 0, 1, ... are of class C1 on a segment [a, b].

2. ( fn) simply converges on the same segment to a function f .

3. The sequence of derivatives ( ˙fn) converges uniformly to a function g.

Then, the sequence of functions ( fn) converges uniformly to a derivable function f

and moreover ˙f = g.
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Proof. Since ( ˙fn) is a sequence of continuous functions on a segment [a, b] ,

converging uniformly on the same segment to a function g , then the use

of the proposition of integration affirms that ˙fn is an integrable function on

[a, b], and moreover:

fn(x) = fn(a) +

∫ x

a

˙fn(x)dx. (1.24)

According to Corollary 1.1.1, the sequence
(∫ x

a
˙fn(x)dx

)
fn converges uni-

formly, and the numerical sequence ( fn(a)) is also convergent, ( fn(x)) is

therefore the sum of two uniformly convergent sequences, so it is uniformly

convergent.

We have:

lim
n→+∞

∫ x

a

˙fn(x)dx =

∫ x

a
g(x)dx, (1.25)

On the other hand:

lim
n→+∞

∫ x

a

˙fn(x)dx = lim
n→+∞

(
fn(x) = fn(a)

)
= f (x) − f (a). (1.26)

Using (1.25) and (1.26), we get:∫ x

a
g(x)dx = f (x) − f (a). (1.27)

We derive this last equality, we find:

g(x) = ˙f (x). (1.28)

�

Remak 1.5. Under the conditions of the previous proposition, we can write:

lim
n→+∞

(
∂
∂x

fn(x)
)

=
∂
∂x

(
lim

n→+∞
fn(x)

)
= ˙f (x0). (1.29)

1.2 Series of functions

Definition 1.2.1. Let ( fn) be a sequence of functions from E to k. A series of

functions with general term fn is any expression of the form =
∑+∞

n=0 fn(x).
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Let Sn(x) =
∑n

k=0 fk(x), n ∈N and x ∈ E.

Sn is called the partial sum of order n of the series
∑

n≥0 fn(x).

1.2.1 Simple convergence

Definition 1.2.2. A series of functions with general term fn is said to be simply

convergent on a subset E of R, if for all x ∈ E, the numerical series with general

term fn(x) converges.

The term:

Rn(x) = S(x) − Sn(x) =

+∞∑
k=n+1

fn(x), n ∈N and x ∈ E. (1.30)

is called the rest of order n of the series.

The convergence of the series of general term fn is then expressed by the convergence

of the sequence of partial sums (Sn(x)) to a function S That is to say:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E, |Sn(x) − S(x)| = |Rn(x)| < ε. (1.31)

Example 1.2.1. Consider the series of functions with a general term

fn(x) =
xn

√
n + 1

, n ≥ 0 and x ∈ R. (1.32)

For x , 0, the d’Alembert criterion gives us limn→+∞

∣∣∣∣∣ fn+1(x)
fn(x)

∣∣∣∣∣ = |x| . The series

converges when |x| < 1 and diverges when |x| > 1.

If x = −1, the series becomes alternating and verifies the convergence criterion. If

x = 1, it diverges.

Finally, the series of functions converges simply on [−1, 1[ .

1.2.2 Uniform convergence

Definition 1.2.3. A series of functions with general term fn, converges uniformly

on a subset E of R and has the sum S, when the sequence of its partial sums is

uniformly convergent on E, that is:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0, sup
x∈E
|Sn(x) − S(x)| = sup

x∈E
|Rn(x)| < ε. (1.33)
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To say that the sequence of partial sums converges uniformly on E there-

fore means that (Rn)n∈N converges uniformly to 0 on E.

Remak 1.6. We can define a norm of uniform convergence of Sn on E by:

‖Sn‖ = sup
x∈E
|Sn(x)| . (1.34)

The series of functions with a general term fn converges uniformly and with a sum

S if and only if the numerical sequence (‖Sn − S‖)n∈N converges to 0.

1.2.3 Cauchy criterion for uniform convergence

Theorem 1.2.1. For the series of functions with general term fn to be uniformly

convergent on E, it is necessary and sufficient that:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0 and ∀x ∈ E, sup
x∈E

∣∣∣∣∣∣∣∣
p∑

k=q+1

fk(x)

∣∣∣∣∣∣∣∣ < ε.
(1.35)

Proof. The proof of this theorem is the same as for sequences by reasoning

on the sequence of partial sums. �

Corollary 1.2.1. The use of the uniform Cauchy criterion is often by its contrapo-

sition, to show that a series of functions does not converge uniformly.

1.2.4 A necessary condition for uniform conver-

gence

Proposition 1.2.1. For a series of functions to be uniformly convergent, it is

necessary that its general term tends to 0 uniformly.

Proof. It suffices to apply the uniform Cauchy criterion on:∥∥∥ fn
∥∥∥ = sup

x∈E

∥∥∥ fn(x)
∥∥∥ = sup

x∈E
‖Sn(x) − Sn−1‖ . (1.36)

�
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1.2.5 A sufficient condition for uniform conver-

gence (Weierstass criterion)

Proposition 1.2.2. (Proposition and definition) Let
∑

n≥0 fn(x) be a series of func-

tions defined on E. Suppose that there exists a positive numerical series
∑

n≥0 bn,

such that:

∀x ∈ E,
∣∣∣ fn(x)

∣∣∣ < bn. (1.37)

If
∑

n≥0 bn conveges, then the series of functions
∑

n≥0 fn(x) is absolutely and uni-

formly convergent on E.

In this case, we say that the series of functions ( fn)n∈N is normally convergent on

E.

Proof. From the inequality (1.37) and the comparison theorem, we deduce

absolute convergence.

On the other hand, the numerical series
∑

n≥0 bn converges, that is:

∀ε > 0, ∃n0 ∈N, such thay if∀n ≥ n0

∑
k≥n+1

bk < ε. (1.38)

So

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0

∣∣∣∣∣∣∣ ∑k≥n+1

fk(x)

∣∣∣∣∣∣∣ ≤ ∑
k≥n+1

∣∣∣ fk(x)
∣∣∣ ≤ ∑

k≥n+1

bk < ε. (1.39)

This latter quantity independent of x, the rest of the series
∑

n≥0 fn(x) con-

verges uniformly to 0, the series
∑

n≥0 fn(x) is therefore uniformly conver-

gent. �

Example 1.2.2. The series of functions
∑

n≥0
sin(nx)
αn , α > 1 is normally convergent

on R, since
∣∣∣∣∣sin(nx)
αn

∣∣∣∣∣ ≤ ( 1
α

)n

, general term of a convergent geometric series.
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1.2.6 Necessary and sufficient condition for nor-

mal convergence

Proposition 1.2.3. For the series of functions
∑

n≥0 fn to be normally convergent

on E, it is necessary and sufficient that the numerical series (an) with general term:

an = sup
x∈E

∣∣∣ fn(x)
∣∣∣ , (1.40)

be convergent.

Proof. ⇒When the series of functions
∑

n≥0 fn is normally convergent on E,

there exists a positive convergent series of term bn verifying:

∀x ∈ E,
∣∣∣ fn(x)

∣∣∣ ≤ bn, (1.41)

As result

an = sup
x∈E

∣∣∣ fn(x)
∣∣∣ ≤ bn, (1.42)

and the series
∑

n≥0 an is convergent.

⇐ Now let’s assume that
∑

n≥0 an is convergent, then we have:∣∣∣ fn(x)
∣∣∣ ≤ sup

x∈E

∣∣∣ fn(x)
∣∣∣ = an < ε, x ∈ E, (1.43)

this is the definition of a normally convergent series. �

Example 1.2.3. The series of functions
∑

n≥0 fn(x) defined on [0, 1], such that:

fn(x) =

 xn ln2 x if x ∈ ]0, 1] ,

0, if x = 0
(1.44)

We have:

˙fn(x) = ln(x) (2 + n ln(x)) xn−1 = 0, if x = exp(
−2
π

) = xn. (1.45)

As result

an = sup
x∈[0,1]

∣∣∣ fn(x)
∣∣∣ = fn(xn) =

4
n2e2 , (1.46)

general term of a convergent series. The series of functions is normally convergent

on [0, 1] .
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Proposition 1.2.4. The normal convergence of a series of functions on a subset E

of R implies the uniform convergence of this series on E, and the converse is false.

Proof. When the series of functions
∑

n≥0 fn is normally convergent on E, the

proof proceeds from the inequality:

sup
x∈E

∣∣∣∣∣∣∣∣
p∑

k=q+1

fk(x)

∣∣∣∣∣∣∣∣ ≤
p∑

k=q+1

sup
x∈E

∣∣∣ fk(x)
∣∣∣ (1.47)

and the Cauchy criterion.

The converse of this proposition is false. As an example, we take the series

of functions with a general term

fn(x) =
(−1)n

n + x
, x ∈ [0, 1] and n ≥ 1. (1.48)

This series is uniformly convergent without being normally convergent on

[0, 1].

On the other hand:

|Rn(x)| ≤
∣∣∣ fn+1(x)

∣∣∣ =
1

n + 1 + x
<

1
n + 1

< ε, for all x ∈ [0, 1] , (1.49)

which shows uniform convergence on [0, 1] .

By against:

sup
x∈[0,1]

∣∣∣ fn(x)
∣∣∣ =

1
n
, (1.50)

general term of a divergent series, the series is therefore not normally con-

vergent. �

1.3 Properties of series of functions

1.3.1 Continuity

Proposition 1.3.1. Let be a series of functions of general term fn, defined on the

interval [a, b], which converges uniformly and of sum S on [a, b]. If fn is continuous
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on [a, b], for all n ∈ N, then S is also continuous on [a, b], and moreover, we have

the following éequality:

lim
x→x0

∑
n≥0

fn(x) =
∑
n≥0

lim
x→x0

fn(x) = S(x0), for all x0 ∈ [a, b] , (1.51)

which is a case of inversion of limit and infinite sum.

Proof. It suffices to apply Proposition 1.1.4 to the sequence (Sn) of partial

sums of the series
∑

n≥0 fn, which are continuous as finite sums of continuous

functions. �

Remak 1.7. The condition of uniform convergence of the series of functions is

sufficient but not necessary to ensure the continuity of the sums.

Remak 1.8. When the series of continuous functions of general term fn simply

converges on [a, b] and has as sum a discontinuous function S, then
∑

n≥0 fn does

not converge uniformly on this interval.

Example 1.3.1. The series of general term continuous functions:

fn(x) = sin2(x) cosn(x), x ∈
[
0,
π
2

]
, n ∈N. (1.52)

converges simply on
[
0,
π
2

]
and has the sum:

S(x) =


sin2(x)

1 − cos(x)
, if x ∈

]
0,
π
2

]
0, si x = 0.

(1.53)

Since S is discontinuous at 0,
∑

n≥0 fn does not converge uniformly on
[
0,
π
2

]
.

1.3.2 Integrability

Proposition 1.3.2. Let a series of functions with general term fn, defined on [a, b],

converges uniformly and with sum S on [a, b]. If fn is continuous on [a, b], for all

n ∈N, then, the series with general term
∫ b

a fn(x)dx converges and has the sum
∫ b

a

S(x)dx , and moreover, we have the following equality:∫ b

a
S(x)dx =

∑
n≥0

∫ b

a
fn(x)dx =

∫ b

a

∑
n≥0

fn(x)dx

 ,
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which is a case of interversion sum and integral.

Proof. It suffices to apply Proposition 1.1.5 to the sequence of partial sums

(Sn)n∈N of the series
∑

n≥0 fn(x). �

Example 1.3.2. Let the series of functions with general term:

fn(x) =
x2n

(2n)!
, x ∈ [0, 1] .

This series converges uniformly on [0, 1] , since
∣∣∣ fn(x)

∣∣∣ ≤ 1
(2n)!

, for all x ∈ [0, 1] .

According to the previous proposition, we then have:∫ x

0

∑
n≥0

x2n

(2n)!
dx

 =
∑
n≥0

∫ x

0

x2n

(2n)!
dx

=
∑
n≥0

x2n+1

(2n + 1)!

= sinh(x), for all x ∈ [0, 1] .

1.3.3 Derivability

Proposition 1.3.3. Consider a series of functions with general term fn, derivable

on the segment [a, b] and verifying:

1. The series of functions
∑

n≥0 fn(x) converges simply on [a, b].

2. The series of derivatives of general term ˙fn converges uniformly on [a, b] and has

as sum a function g .

Then, the series of general term fn is derivable term by term, and we have:

Ṡ(x) =
∂
∂x

∑
n≥0

fn(x)

 =
∑
n≥0

∂
∂x

fn(x) = g(x),

Proof. It suffices to apply Proposition 1.1.5 to the sequence of partial sums

(Sn)n∈N of the series of general term fn, which is derivable as finite sums of

derivable functions. �
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