Abdelhafid Boussouf University Center, Mila Institute of Mathematics and Computer Science Department of Mathematics Analysis 3

Solutions of exercises about numerical series

Solution of exercise 1:

1. We have:

$$u_n = \frac{1}{n(n-1)} \\ = \frac{1}{n-1} - \frac{1}{n},$$

which implies:

$$\lim_{n \to +\infty} S_n = \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k} \right)$$
$$= \lim_{n \to +\infty} \left(1 - \frac{1}{n} \right) = 1.$$

Hence $\sum_{n=2}^{+\infty} \frac{1}{n(n-1)}$ converges with sum S=1.

$$\sum_{n=0}^{+\infty} \frac{n^2}{n!} = \sum_{n=1}^{+\infty} \frac{n}{(n-1)!}$$

$$= \sum_{n=1}^{+\infty} \left(\frac{n-1}{(n-1)!} + \frac{1}{(n-1)!} \right)$$

$$= \sum_{n=2}^{+\infty} \frac{1}{(n-2)!} + \sum_{n=1}^{+\infty} \frac{1}{(n-1)!}$$

$$= 2e,$$

we then have $\sum_{n=0}^{+\infty} \frac{n^2}{n!}$ converges with sum S = 2e.

3. Since

$$\sum_{n=0}^{+\infty} (-1)^n \frac{\cos(nx)}{2^n} = Reel \left(\sum_{n=0}^{+\infty} \left(-\frac{\exp(ix)}{2} \right)^n \right)$$
$$= Reel \left(\frac{2}{2 + \exp(ix)} \right)$$
$$= \frac{4 + 2\cos x}{5 + 4\cos x}.$$

we then have $\sum_{n=0}^{+\infty} (-1)^n \frac{\cos(nx)}{2^n}$ converges with sum $S = \frac{4+2\cos x}{5+4\cos x}$.

Let us study the nature of the proposed numerical series

1. Since

$$\lim_{n\to+\infty}n\sin(\frac{1}{n})=1\neq0,$$

the series $\sum_{n=1}^{+\infty} n \sin(\frac{1}{n})$ is divergent.

2. We have

$$\arctan(\frac{1}{n^2}) \stackrel{V(+\infty)}{\sim} \frac{1}{n^2}$$

general term of convergent series (Riemann's series with α =

Therefore
$$\sum_{n=1}^{+\infty} \arctan(\frac{1}{n^2})$$
 converges.
3. $\sum_{n=1}^{+\infty} \frac{\alpha^n}{\alpha^{2n} + \alpha^n + 1}$ $(\alpha \ge 0)$. Let $u_n = \frac{\alpha^n}{\alpha^{2n} + \alpha^n + 1}$.

3.1. If $\alpha = 0$, $\sum_{n=1}^{+\infty} u_n = 0$, the proposed series converges.

3.2. If
$$\alpha = 1$$
, $u_n = \frac{1}{3} \rightarrow 0$, when $n \rightarrow +\infty$, the series diverges.

3.2. If $\alpha \in]0,1[$. Consider the geometric series of general terlm $v_n = \alpha^n$, which is convergent.

Since $\lim_{n\to+\infty}\frac{u_n}{v_n}=1$, the both series $\sum_{n=1}^{+\infty}u_n$ and $\sum_{n=1}^{+\infty}v_n$ are therfore the same nature, which shows the convergence of the series

 $\sum_{n=1}^{+\infty} u_n.$ 3.4. If $\alpha > 1$. Consider the geometric series of the general term $v_n = \left(\frac{1}{\alpha}\right)^n$ which is convergent.

Since $\lim_{n\to+\infty}\frac{u_n}{v_n}=1$, the both series $\sum_{n=1}^{+\infty}u_n$ and $\sum_{n=1}^{+\infty}v_n$ are therfore the same nature, which shows the convergence of the series $\sum_{n=1}^{+\infty} u_n.$ 4. Using the Cauchy's creterion, we get

$$\lim_{n \to +\infty} \left(\left(\frac{n+a}{n+b} \right)^{n^2} \right)^{\frac{1}{n}} = \lim_{n \to +\infty} \left(\frac{1+\frac{a}{n}}{1+\frac{a}{n}} \right)^n$$
$$= \exp(a-b).$$

Therefore:

4.1. If a < b, $\exp(a - b) < 1$, the series is convergent.

4.2. 4.1. If a > b, $\exp(a - b) > 1$, the series is divergent

4.3. If a = b, $u_n = 1 \rightarrow 0$, when $n \rightarrow +\infty$, the proposed series is divergent.

5. We have $\frac{\ln(n)}{n^2+2} < \frac{\ln(n)}{n^2}$, general term of Bertrand's series which is convergent, the series $\sum_{n=1}^{+\infty} \frac{\ln(n)}{n^2+2}$ is therefore conver-

6. Let $u_n = \frac{1 \times 3 \times ... \times (2n-1)}{2 \times 4 \times ... \times (2n)}$, we then have:

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{2n+1}{2n+2} = 1.$$

According to d'Alembert, we can't conclude. Usig the Raab

Duhamel creterion, we get:

$$\lim_{n \to +\infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = \lim_{n \to +\infty} \frac{n}{2n+2} = \frac{1}{2} < 1.$$

Consequently, the series $\sum_{n=1}^{+\infty} \frac{1 \times 3 \times ... \times (2n-1)}{2 \times 4 \times ... \times (2n)}$ is divergent.

7. Let
$$u_n = \frac{2^n}{n^2} \sin^{2n}(\theta), \theta \in \left[0, \frac{\pi}{2}\right]$$
.

8. If $x = 2k\pi$, $u_n = \frac{1}{n}$ general term of harmonic series which is divergent.

If $x \neq 2k\pi$. We can write

$$u_n = a_n \times b_n$$

where $a_n = \exp(inx)$ and $b_n = \frac{1}{n}$.

We then have

$$\left| \sum_{k=1}^{n} a_{k} \right| = \left| \sum_{k=1}^{n} \exp(ikx) \right| = \left| \exp(ix) \times \left(\frac{1 - \exp(inx)}{1 - \exp(ix)} \right) \right|$$

$$= \left| \left(\frac{1 - \exp(inx)}{1 - \exp(ix)} \right) \right|$$

$$\leq \left| \frac{2}{1 - \exp(ix)} \right|$$

$$= \frac{2}{|1 - \cos x - i \sin x|}$$

$$= \frac{2}{2 \left| \sin \frac{x}{2} \right| \times \left| \sin \frac{x}{2} + i \cos \frac{x}{2} \right|}$$

$$= \frac{1}{\left| \sin \frac{x}{2} \right|}.$$

In the auther hand, the sequence (b_n) is decreasing and tends towards zero, therefore, according to Abel, the series $\sum_{n=1}^{+\infty} \frac{\exp(inx)}{n}$

Solution of exercise 3:

1. Consider the numerical series of general term

$$u_n = \frac{\sin n}{n^{\theta}}.$$

1. 1. Let's show that: if $\theta > 1$, the series is absolutely convergent.

Indeed: If $\theta > 1$, we have $|u_n| \le \frac{1}{n^{\theta}}$, general term of convergent series, therefore $\sum_{n=1}^{+\infty} \frac{\sin n}{n^{\theta}}$ is absolutely convergent. 1. 2. If $v0 < \theta \le 1$, we have

$$|u_n| = \left| \frac{\sin n}{n^{\theta}} \right| \ge \frac{\sin^2 n}{n^{\theta}}$$
$$= \frac{1}{2n^{\theta}} - \frac{\cos(2n)}{2n^{\theta}}$$
$$= v_n.$$

Since $\sum_{n=1}^{+\infty} \frac{1}{n^{\theta}}$ diverges and $\sum_{n=1}^{+\infty} \frac{\cos(2n)}{n^{\theta}}$ converges (according to Abel), the series $\sum_{n=1}^{+\infty} v_n$ is therefore convergent, it follows that $\sum_{n=1}^{+\infty} u_n$ does not converge absolutely. But the series $\sum_{n=1}^{+\infty} u_n$ converges (according to Abel), hence $\sum_{n=1}^{+\infty} u_n$ is semi-convergent. 1. 3. Whereas, if $\theta \le 0$, the series is divergent.

Indeed, if $\alpha \leq 0$, $\lim_{n \to +\infty} u_n$ does not exist, the series $\sum_{n=0}^{+\infty} u_n$ is therefore divergent.

2.. Consider the series $\sum_{n=1}^{+\infty} \left(\frac{2n-1}{n+1}\right)^{2n} \theta^n$, $\theta \in \mathbb{R}$.

Let $u_n = \left(\frac{2n-1}{n+1}\right)^{2n} \theta^n$. Using the Cauchy's creterion of the series

absolutely convergente, we find:

$$\lim_{n \to +\infty} |u_n|^{\frac{1}{n}} = 4|\theta|.$$

Therefore:

2. 1. If $|\theta| < \frac{1}{4}$, the series is absolutely convergent. 2. 2. If $|\theta| > \frac{1}{4}$, the series is divergent. 2. 3. If $|\theta| = \frac{1}{4}$, the general term can be written as:

$$|u_n| = \left(\frac{2n-1}{2n+2}\right)^{2n} = \left(1 - \frac{3}{2n+2}\right)^{2n},$$

which tends to $\exp(-3) \neq 0$, when $n \to +\infty$, the series is therefore divergent.

fore divergent.

3. Consider the series $\sum_{n=1}^{+\infty} \frac{\cos(n)}{n^{\theta} + \cos(n)}$, $\theta \in \mathbb{R}$.

3.1. If $\theta \le 0$, $\lim u_n$ does not exist, and the series diverges.

3.2. If $\theta > 1$, we have $|u_n| = \left|\frac{\cos(n)}{n^{\theta} + \cos(n)}\right| \le \left|\frac{1}{n^{\theta}}\right|$. Since $\frac{1}{n^{\theta}}$ is general term of convergent series (Riemann's series with $\theta > 1$), then the series $\sum_{n=1}^{+\infty} \frac{\cos(n)}{n^{\theta} + \cos(n)}$ is absolutely convergent.

3.3. If $0 < \theta \le 1$. We can write $u_n = \frac{\cos(n)}{n^{\theta}} \times \frac{1}{1 + \frac{\cos(n)}{n^{\theta}}}$.

3.3. If
$$0 < \theta \le 1$$
. We can write $u_n = \frac{\cos(n)}{n^{\theta}} \times \frac{1}{1 + \frac{\cos(n)}{n^{\theta}}}$.

By using the Taylor expansion of the function $x \mapsto \frac{1}{1+x}$ in neighborhood of 0, we get:

$$u_n = \frac{\cos(n)}{n^{\theta}} \left(1 - \frac{\cos(n)}{n^{\theta}} + \frac{\cos(n)}{n^{\theta}} \varepsilon(n) \right)$$

$$= \frac{\cos(n)}{n^{\theta}} - \frac{\cos^2(n)}{n^{2\theta}} + \frac{\cos^2(n)}{n^{2\theta}} \varepsilon(n), \text{ where } \varepsilon(n) \to 0, \text{ when } n \to +\infty$$

We therefore have the sum of two absolutely convergent series

Smail KAOUACHE. Solution of exercises about numerical series (2025/2026) 7

and one convergent series. Therefore, the considered series is convergent.