Academic Year: 2024/2025 Module: Biostatistics1 Specialty: L3 BC (S5)

Pr: B.Cennaf

Series: 01

Review On

Double statistics

Abdelhafid University Center Boussouf, Mila Institute of Natural Sciences

and Life Sciences

Exercise 1

Determine an antiderivative (primitive) of the proposed function f on the given interval I:

$$f(x) = x^2 - 5x + \frac{1}{x}$$
 on $I = 0; +\infty[$.

$$f(x) = \frac{x^2 + x + 1}{x}$$
 on $I =]0; +\infty[$.

3
$$f(x) = \frac{7}{x} + \frac{5}{\sqrt{x}} + \frac{1}{x^2}I = 0; +\infty[.$$

$$f(x) = \frac{3}{3x-4}$$
 on $I = \frac{4}{3}$; $+\infty$ [.

$$f(x) = \frac{1}{x+1}$$
 on $I =]-1; +\infty[$.

$$f(x) = \frac{1}{x+1}$$
 on $I =]-\infty; -1[$.

$$f(x) = \frac{2x}{x^2-4}$$
 on $]2; +\infty[$, (Supplementary).

8
$$f(x) = \frac{1}{3x-5}$$
 on $[2; +\infty[$, (Supplementary).

9
$$f(x) = \frac{x+1}{x^2+2x+2}$$
 on \mathbb{R} , (Supplementary).

$$f(x) = \frac{x}{x^2-1}$$
 on $]-1;1[$, (Supplementary).

Exercise 2

Compute by integration by parts the integrals:

$$1 \quad \int x \cdot \sin(x)$$

$$2 \int x \cdot e^x$$

$$\int x^2 \cdot \ln(x)$$

$$4 \int \ln(x)$$

Exercise 3

An experiment was conducted on 250 people to study the relationship between age X and sleeping time Y. The following table was obtained:

X	[5, 7[[7, 9[[9, 11[[11, 15[
[1,3[0	0	2	36
[3, 11[0	3	12	26
[11, 19[2	8	35	16
[19, 31[0	26	22	3
[31, 59[22	15	6	0

- 1 Compute the marginal means and marginal standard deviations of X and Y.
- Determine the covariance and the linear correlation coefficient.
- Determine the regression line of Y as a function of X.
- 4 Estimate the sleeping time of a 66-year-old person.

Exercise 4

The measurements of the number X of rainy days and the rainfall height Y (in mm) in Paris every 5 years between 1960 and 1995 are summarized in the following table.

year	1960	1965	1970	1975	1980	1985	1990	1995
X	198	196	199	164	170	163	149	162
Y	739	880	631	658	690	501	501	670

- 1 Plot the scatter plot.
- 2 Compute the correlation coefficient.
- 3 Is there a relationship between variables X and Y?

Exercise 5 (Supplementary)

In this exercise, we will work with two variables, the concentration of nutrients in the soil (X) and the growth of a plant (Y) in centimeters after 60 days of experimentation. Here are the collected data:

Sample	Nutrient Concentration (X)	Plant Growth (Y)
1	5	8
2	7	9
3	6	8
4	9	11
5	8	10

- 1 Compute the marginal means of X and Y.
- 2 Compute the variance of X and Y.
- 3 Compute the standard deviation of X and Y.
- 4 Compute the covariance between X and Y.
- 5 Compute the correlation coefficient between X and Y.
- 6 Compute the regression line of Y as a function of X.