COURSE

1

Review on Bivariate Statistics

The objective of this statistical study is to analyze, within the same population of N individuals, two different characteristics (or different modalities) and to determine whether there exists a link or correlation between these two variables. Examples of possible relationships between the following variables: height and age; diabetes and weight; cholesterol level and diet; ecological niche and population; sunlight and plant growth; toxin and metabolic reaction; survival and pollution; effects and doses; organ 1 and organ 2; organ and biological function; . . .

Bivariate Statistical Series

Definition

A statistical series with two variables (or bivariate statistical series) is a statistical series in which two characteristics are studied simultaneously.

Example 01

For a car model, the fuel consumption (in L/100 km) was recorded at different speeds (in km/h) in fifth gear:

Speed $x_i(inkm/h)$					130	150
Consumption $y_i(\text{inL/100km})$	3	3.1	3.7	4.7	6	9

1.1.1 Scatter Plot

Definition

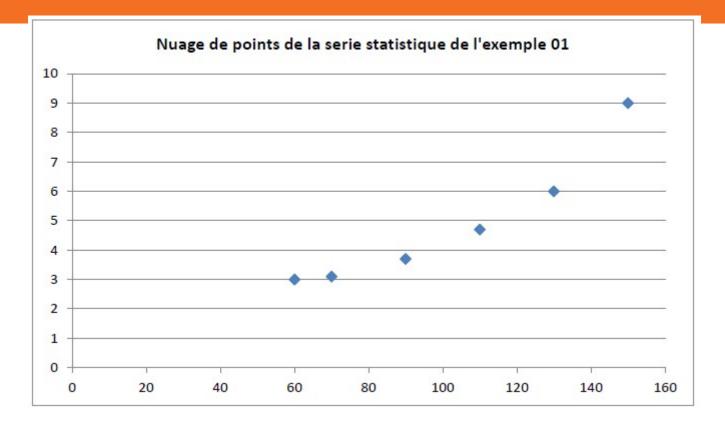
In an orthogonal coordinate system, the set of points M_i with coordinates (x_i, y_i) constitutes the scatter plot associated with the bivariate statistical series.

1.1.2 Marginal Means

Definition

 \bar{x} represents the mean of x_i :

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{N} \sum_{i=1}^{n} x_i$$



 \bar{y} represents the mean of y_i :

$$\bar{y} = \frac{y_1 + y_2 + \dots + y_n}{N} = \frac{1}{N} \sum_{i=1}^{n} y_i$$

Example

The marginal means from Example 01 are:

$$\bar{x} = \frac{60 + 70 + 90 + 110 + 130 + 150}{6} = 101.66$$

$$\bar{y} = \frac{3 + 3.1 + 3.7 + 4.7 + 6 + 9}{6} = 4.91$$

1.1.3 Covariance

Definition

The covariance of x and y is defined as the number

$$cov(x,y) = \frac{1}{N} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \left(\frac{1}{N} \sum_{i=1}^{n} x_i y_i\right) - \bar{x}\bar{y}$$

Recall

The variance of the variable x is:

$$V(x) = \frac{1}{N} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \left(\frac{1}{N} \sum_{i=1}^{n} x_i^2\right) - \bar{x}^2 = \text{cov}(x, x)$$

The variance of the variable y is:

$$V(y) = \frac{1}{N} \sum_{i=1}^{n} (y_i - \bar{y})^2 = \left(\frac{1}{N} \sum_{i=1}^{n} {y_i}^2\right) - \bar{y}^2 = \text{cov}(y, y)$$

It is used to calculate the standard deviation: $\sigma(x) = \sqrt{V(x)}, \sigma(y) = \sqrt{V(y)}$.

Example

Compute in Example 01: $cov(\boldsymbol{x}, \boldsymbol{y}), cov(\boldsymbol{x}, \boldsymbol{x}), cov(\boldsymbol{y}, \boldsymbol{y}), \sigma(x), \sigma(y)$. We have:

							Sum
x_i	60	70	90	110	130	150	
y_i	3	3.1	3.7	4.7	6	9	
x_iy_i	180	217	333	517	780	1350	3377
x_i^2	3600	4900	8100	12100	16900	22500	68100
y_i^2	9	9.61	13.69	22.09	36	81	171.39

$$\bar{x} = 101.66, \quad \bar{y} = 4.91$$

$$cov(\boldsymbol{x}, \boldsymbol{y}) = \left(\frac{1}{N} \sum_{i=1}^{n} x_i y_i\right) - \bar{x}\bar{y} = \frac{3377}{6} - 499.15 = 63.68$$

$$V(x) = \left(\frac{1}{N}\sum_{i=1}^{n}x_i^2\right) - \bar{x}^2 = \frac{68100}{6} - (101.66)^2 = 1015.2444$$

$$oldsymbol{V}(oldsymbol{y}) = \left(rac{1}{N}\sum_{i=1}^n y_i^2
ight) - ar{y}^2 = rac{ extbf{171.39}}{ extbf{6}} - (extbf{4.91})^2 = extbf{4.4569}$$

$$\sigma(x) = \sqrt{V(x)} = \sqrt{1015.2444} = 31.86$$

$$\sigma(y) = \sqrt{V(y)} = \sqrt{4.4569} = 2.11$$

Theorem

1. The regression line D of Y with respect to X has the equation D(Y/X) : Y = aX + b, where:

$$a = \frac{\operatorname{cov}(x, y)}{V(x)}$$

and $b = \bar{Y} - a\bar{X}$.

2. The regression line D of X with respect to Y has the equation D(X/Y) : X = a'Y + b', where:

$$a' = \frac{\operatorname{cov}(x, y)}{V(y)}$$

and $b' = \bar{X} - a'\bar{Y}$.

Example

Compute in Example 01 the regression line D of Y with respect to X. We have:

$$\bar{x} = 101.66, \bar{y} = 4.91, cov(x, y) = 63.68, \quad V(x) = 1015.2444, \quad V(y) = 4.4569.$$

1. D(Y/X): Y = aX + b

$$a = \frac{\text{cov}(x,y)}{V(x)} = 0.0627, \quad b = \bar{Y} - a\bar{X} = -1.46.$$

Therefore D(Y/X): Y = aX + b = 0.0627X - 1.46

2. D(X/Y): X = a'Y + b'

$$a' = \frac{\text{cov}(x, y)}{V(y)} = 14.287, \quad b' = \bar{X} - a'\bar{Y} = 31.51$$

Therefore D(X/Y): X = a'Y + b' = 14.287Y + 31.51

1.1.4 Linear Correlation Coefficient

Definition

The linear correlation coefficient of a bivariate statistical series x and y is the number r defined by:

$$r = \frac{\operatorname{cov}(x, y)}{\sqrt{V(x)}\sqrt{V(y)}} = \frac{\operatorname{cov}(x, y)}{\sigma(x)\sigma(y)}$$

Remark

1. $-1 \le r \le 1$.

2. If r = 1 or r = -1, then there is a perfect positive or negative correlation between X and Y, and all the points (x_i, y_i) lie on the regression line.

A positive correlation means that an increase in X causes an increase in Y.

A negative correlation means that an increase in X causes a decrease in Y (or vice versa).

3. If r = 0, then there is no correlation between X and Y, and the points (x_i, y_i) are scattered randomly.

4. If 0 < r < 1, then there is a weak, moderate, or strong positive correlation between X and Y.

5. If -1 < r < 0, then there is a weak, moderate, or strong negative correlation between X and Y.

Example

Compute in Example 01 the linear correlation coefficient.

We have $cov(x, y) = 63.68, \sigma(x) = 31.86, \sigma(y) = 2.11.$

Therefore:

$$r = \frac{\text{cov}(x, y)}{\sigma(x)\sigma(y)} = 0.947$$

Hence, there is a strong positive correlation between X and Y.