Année Universitaire : 2025-2026

TP n°1

Extraction par un solvant - Isolement de la caféine du thé

1. Introduction

L'extraction par solvant est une technique largement utilisée pour séparer un produit issu d'un mélange réactionnel ou pour isoler une espèce chimique à partir d'une source naturelle.

Dans cette étude, l'extraction et l'isolement de la caféine contenue dans le thé sont réalisés à l'aide de deux solvants : l'eau et le dichlorométhane.

Les composés polaires, dont la caféine, passent en phase aqueuse lors de l'infusion, tandis que les macromolécules apolaires restent insolubles.

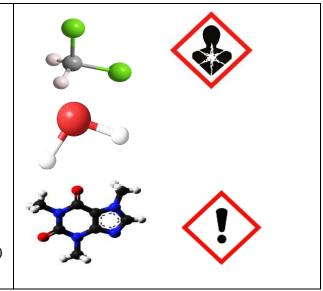
On procède ensuite à une extraction liquide-liquide pour transférer la caféine de la phase aqueuse vers la phase organique. Le solvant organique est finalement évaporé afin d'obtenir des cristaux de caféine, qui pourront ensuite être analysés.

2. Objectifs

- Examiner et identifier les risques des solvants employés.
- Mettre en œuvre une extraction liquide-liquide de la caféine du thé.

3. Extraction de la caféine contenue dans le thé à l'aide de dichlorométhane

3.1. Données physico-chimiques


Dichlorométhane: CH₂Cl₂ Densité: 1,33

Point d'ébullition : 40°C

Eau: H₂O Densité: 1,00 Point d'ébullition: 100°C

 $\begin{array}{c} \textbf{Caf\'eine}: C_8H_{10}N_4O_2\\ Densit\'e: 1,23 \end{array}$

Point d'ébullition : 235-238°C (sublimation)

3.2. Mode opératoire

• Infuser 2 à 3 sachets de thé dans 100 mL d'eau chaude.

- Filtrer le mélange à l'aide d'un entonnoir et d'un coton ou papier filtre pour éliminer les résidus solides.
- Ajouter du chlorure de sodium (NaCl) pour diminuer la solubilité de la caféine dans l'eau (effet de relargage).
- Introduire la solution aqueuse dans une ampoule à décanter.
- Ajouter environ 10 mL de dichlorométhane (mesurés à l'éprouvette graduée) sous la hotte.

phase supérieure

phase

inférieure

• Boucher l'ampoule à décanter et agiter énergiquement pendant une minute, en dégazant régulièrement.

Attention : diriger l'ampoule vers un mur, jamais vers une personne.

- Laisser décanter pendant quelques instants, jusqu'à séparation nette des deux phases.
- Récupérer la phase organique dans un erlenmeyer propre et sec.
- Sécher la phase organique sur un agent déshydratant anhydre (ex : sulfate de magnésium ou sulfate de sodium), filtrer, puis évaporer le solvant à l'évaporateur rotatif à température modérée ; récupérer le résidu solide.
- Caractériser la caféine par mesure de la température de fusion des cristaux obtenus à l'aide d'un banc Kofler ou appareil de point de fusion et observation macroscopique des cristaux.

4. Compte rendu

- 1. Faire un schéma légendé des étapes clés.
- 2. Nommer : soluté extrait, solution initiale, solvant de la solution initiale, solvant extracteur.
- 3. Décrire la couleur des phases avant/après extraction.
- 4. Identifier la phase supérieure et inférieure. Cela correspond-il aux données ? Justifier.
- 5. Lister les espèces attendues dans chaque phase et discuter si l'extraction est totale ou non, avec justification expérimentale.
- 6. Indiquer quel solvant s'évapore le plus facilement à l'air libre et pourquoi.
- 7. Rappeler deux propriétés essentielles d'un solvant extracteur.
- 8. Décrire les précautions à prendre lors de la manipulation des réactifs utilisés.