University A. Elhafidh Boussouf Mila Institute of Science and Technology Department of Process Engineering 2nd year Engineer GP

Tutorial Nº 1

Exercise 1

A commercial phosphoric acid solution contains 75% by mass of H_3PO_4 , and its density is 1.57 g/mL. Determine the molar concentration, normality, molality, mole fraction, and molar percentage of H_3PO_4 in this commercial solution.

Exercise 2

The measurement of the conductivity of a potassium chloride ($K^+ + Cl^-$) solution with concentration C gives 1.224 mS·cm⁻¹ at 21°C.

- **1.** Express σ , the conductivity, in S·m⁻¹.
- **2.** The following values are provided:

```
\lambda_{Cl-} = 7,63 \text{ mS. } m^2. \text{ } mol^{-1}; \lambda_{K+} = 7,35 \text{ } mS. \text{ } m^2. \text{ } mol^{-1}
```

- 2.1. What does the letter λ represent?
- 2.2. Convert these values to $S.m^2$. mol^{-1} .
- 2.3. Determine the concentration C in $mol. L^{-1}$.

Exercise 3

An unknown amount m_{LiCl} of lithium chloride was dissolved in a 200 mL volumetric flask.

Given:

Molar conductivities at 25°C: λ_{Li+} = 3,86 mS.m²/mol⁻¹; λ_{Cl-} = 7,63 mS.m².mol⁻¹ Molar masses: M_{Li} = 6,9 g.mol⁻¹, M_{Cl} = 35,5 g.mol⁻¹

- **1.** Determine the concentration C in mol.L⁻¹ of this solution, knowing that its conductivity is $\sigma = 34.5$ mS.cm⁻¹ (we previously calibrated the conductometer).
- 2. What mass m_{LiCl} of lithium chloride was placed in the volumetric flask?

Exercise 4

A potassium chloride (KCl) solution has a concentration C= 5.10⁻³ mol.L⁻¹.

- **1.** Write the equation for the dissolution reaction of potassium chloride in water.
- **2.** The dissolution is complete. Calculate, in mol.m⁻³, the concentrations of the ions K⁺ and Cl⁻ in the solution. Justify your answer clearly.
- **3.** Calculate the conductivity of the solution.

Given :

Ionic molar conductivities: λ_{Cl} = 7,63.10⁻³ S.m².mol⁻¹, λ_{K+} = 7,4.10⁻³ S.m².mol⁻¹

Exercise 5

Dissolve 0.5 g of calcium nitrate Ca(NO₃)₂ in a 200 mL volumetric flask.

Given:

Molar mass of calcium nitrate: $M_{Ca(NO3)2} = 164 \text{ g/mol}$.

Ionic molar conductivities at 25°C: $\lambda_{Ca2+} = 11,90 \text{ mS.m}^2$. mol⁻¹; $\lambda_{NO3-} = 7,14 \text{ mS.m}^2$. mol⁻¹ Ionic molar conductivities at 20°C: $\lambda_{Ca2+} = 7,44 \text{ mS.m}^2$. mol⁻¹; $\lambda_{NO3-} = 6,43 \text{ mS.m}^2$. mol⁻¹

- a) Indicate the ions present in the solution and calculate their concentrations.
- b) Calculate the conductivity σ at 25°C and 20°C. Explain the difference in results.

Exercise 6

We mix a volume $V_1 = 200 \ mL$ of a potassium chloride $(K^+ + Cl^-)$ solution with concentration $C_1 = 5,0.10^{-3} \ mol/L$ with a volume $V_2 = 800 \ mL$ of a sodium chloride $(Na^+ + Cl^-)$ solution with concentration $C_2 = 1,25.10^{-3} \ mol/L$.

- 1. What is the conductivity of the resulting solution?
- **2.** In the previous mixture, a conductometer cell is placed. The surface area of the electrodes is $11,0cm^2$ and the distance between them is 1,1cm.
 - 2.1. What is the value of the conductance?

Given:

```
\lambda_{Na+} = 5,01.10^{-3} \text{ S. } m^2 / \text{ mol}

\lambda_{Cl-} = 7,63.10^{-3} \text{ S. } m^2 / \text{ mol}

\lambda_{K+} = 7,35.10^{-3} \text{ S. } m^2 / \text{ mol}
```

Exercise 7

Using a cell, the conductance G of a sodium chloride (NaCl) solution S_1 with concentration $c = 5.10^{-3}$ mol/L was measured, and it was found to be $G = 5.45.10^{-3}$ S.

- 1. Write the equation for the dissociation reaction of sodium chloride in water.
- **2.** The dissociation of NaCl is complete. Determine the concentrations (in mol/L and mol/m^3) of the ions Na^+ and Cl^- . Provide a clear justification for your answer.
- **3.** Determine the conductivity σ of the solution.
- **4.** The value K = L / S (where L is the distance between the electrodes and S is the submerged surface area of an electrode) is called the "cell constant." Determine K.

Given:

Ionic molar conductivities: λ_{Na+} = 3,87.10⁻³ S. $m^2.$ mol ; λ_{Cl-} = 7,63.10⁻³ S. $m^2/$ mol